
Project 4 Operating Systems

 Page 1

Programming Project 4:
Kernel Resource Management

Due Date: ______________________________
Duration: One Week

Overview and Goal

In this project, you will implement three monitors that will be used in our Kernel. These are the
ThreadManager, the ProcessManager, and the FrameManager. The code you write will be similar to
other code from the previous projects in that these three monitors will orchestrate the allocation and
freeing of resources.

There is also an additional task—re-implement the Condition and Mutex classes to provide Hoare
Semantics—but that code will not be used in the Kernel.

Download New Files

Start by creating a new directory for this project and then download all the files from:

 http://www.cs.pdx.edu/~harry/Blitz/OSProject/p4/

Even though some of the files have the same names, be sure to get new copies for each project. In
general some files may be modified.

Please keep your old files from previous projects separate and don’t modify them once you submit them.
This is a good rule for all programming projects in all classes. If there is ever any question about
whether code was completed on time, we can always go back and look at the Unix “file modification
date” information.

For this project, you should get the following files:

 makefile
 DISK
 Runtime.s
 Switch.s
 System.h
 System.c
 List.h

Project 4 Operating Systems

 Page 2

 List.c
 BitMap.h
 BitMap.c
 Main.h
 Main.c
 Kernel.h
 Kernel.c

The packages called Thread and Synch have been merged together into one package, now called
Kernel. This package contains quite a bit of other material as well, which will be used for later projects.
In this and the remaining projects, you will be modifying the Kernel.c and Kernel.h files. Don’t
modify the code that is not used in this project; just leave it in the package.

The Kernel.c file contains the following stuff, in this order:

Thread scheduler functions
Semaphore class
Mutex class
Condition class
Thread class
ThreadManager class
ProcessControlBlock class
ProcessManager class
FrameManager class
AddrSpace class
TimerInterruptHandler
other interrupt handlers
SyscallTrapHandler
Handle functions

In this project, you can ignore everything after TimerInterruptHandler. The classes called
ThreadManager, ProcessManager, and FrameManager are provided in outline, but the bodies of the
methods are unimplemented. You will add implementations. Some other methods are marked
“unimplemented;” those will be implemented in later projects.

The BitMap package contains code you will use; read over it but do not modify it.

The makefile has been modified to compile the new code. As before, it produces an executable called
os.

You may modify the file Main.c while testing, but when you do your final run, please use the Main.c
file as it was distributed. In the final version of our kernel, the Main package will perform all
initialization and will create the first thread. The current version performs initialization and then calls
some testing functions.

Project 4 Operating Systems

 Page 3

Task 1: Threads and the ThreadManager

In this task, you will modify the ThreadManager class and provide implementations for the following
methods:

 Init
 GetANewThread
 FreeThread

In our kernel, we will avoid allocating dynamic memory. In other words, we will not use the heap. All
important resources will be created at startup time and then we will carefully monitor their allocation
and deallocation.

An example of an important resource is Thread objects. Since we will not be able to allocate new
objects on the heap while the kernel is running, all the Thread objects must be created ahead of time.
Obviously, we can’t predict how many threads we will need, so we will allocate a fixed number of
Thread objects (e.g., 10) and re-use them.

When a user process starts up, the kernel will need to obtain a new Thread object for it. When a
process dies, the Thread object must be returned to a pool of free Thread objects, so it can be recycled
for another process.

Kernel.h contains the line:

 const MAX_NUMBER_OF_PROCESSES = 10

Since each process in our OS will have at most one thread, we will also use this number to determine
how many Thread objects to place into the free pool initially.

To manage the Thread objects, we will use the ThreadManager class. There will be only one instance
of this class, called threadManager, and it is created and initialized at startup time in Main.c.

Whenever you need a new Thread object, you can invoke threadManger.GetANewThread. This
method should suspend and wait if there are currently none available. Whenever a thread terminates, the
scheduler will invoke FreeThread. In fact, the Run function has been modified in this project to
invoke FreeThread when a thread terminates—thereby adding it to the free list—instead of setting its
status to UNUSED.

Here is the definition of ThreadManager as initially distributed:

Project 4 Operating Systems

 Page 4

 class ThreadManager
 superclass Object
 fields
 threadTable: array [MAX_NUMBER_OF_PROCESSES] of Thread
 freeList: List [Thread]
 methods
 Init ()
 Print ()
 GetANewThread () returns ptr to Thread
 FreeThread (th: ptr to Thread)
 endClass

When you write the Init method, you’ll need to initialize the array of Threads and you’ll need to
initialize each Thread in the array and set its status to UNUSED. (Each Thread will have one of the
following as its status: READY, RUNNING, BLOCKED, JUST_CREATED, and UNUSED.)
Threads should have the status UNUSED iff they are on the freeList. You’ll also need to initialize the
freeList and place all Threads in the threadTable array on the freeList during initialization.

You will need to turn the ThreadManager into a “monitor.” To do this, you might consider adding a
Mutex lock (perhaps called threadManagerLock) and a condition variable (perhaps called
aThreadBecameFree) to the ThreadManager class. The Init method will also need to initialize
threadManagerLock and aThreadBecameFree.

The GetANewThread and FreeThread methods are both “entry methods,” so they must obtain the
monitor lock in the first statement and release it in the last statement.

GetANewThread will remove and return a Thread from the freeList. If the freeList is empty, this
method will need to wait on the condition of a thread becoming available. The FreeThread method will
add a Thread back to the freeList and signal anyone waiting on the condition.

The GetANewThread method should also change the Thread status to JUST_CREATED and the
FreeThread method should change it back to UNUSED.

We have provided code for the Print method to print out the entire table of Threads.

Note that the Print method disables interrupts. The Print method is used only while debugging and will
not be called in a running OS so this is okay. Within the Print method, we want to get a clean picture of
the system state—a “snapshot”—(without worrying about what other threads may be doing) so disabling
interrupts seems acceptable. However, the other methods—Init, GetAThread and FreeThread—must
NOT disable interrupts, beyond what is done within the implementations of Mutex, Condition, etc.

In Main.c we have provided a test routine called RunThreadManagerTests, which creates 20 threads
to simultaneously invoke GetAThread and FreeThread. Let’s call these the “testing threads” as
opposed to the “resource threads,” which are the objects that the ThreadManager will allocate and
monitor. There are 20 testing threads and only 10 resource thread objects.

Every thread that terminates will be added back to the freeList (by Run, which calls FreeThread).
Since the testing threads were never obtained by a call to GetANewThread, it would be wrong to add

Project 4 Operating Systems

 Page 5

them back to the freeList. Therefore, each testing thread does not actually terminate. Instead it freezes
up by waiting on a semaphore that is never signaled. By the way, the testing threads are allocated on the
heap, in violation of the principle that the kernel must never allocate anything on the heap, but this is
okay, since this is only debugging code, which will not become a part of the kernel.

In the kernel, we may have threads that are not part of the threadTable pool (such as the IdleThread),
but these threads must never terminate, so there is no possibility that they will be put onto the freeList.
Thus, the only things on the freeList should be Threads from threadTable.

You will also notice that the Thread class has been changed slightly to add the following fields:

 class Thread
 ...
 fields
 ...
 isUserThread: bool
 userRegs: array [15] of int -- Space for r1..r15
 myProcess: ptr to ProcessControlBlock
 methods
 ...
 endClass

These fields will be used in a later project. The Thread methods are unchanged.

Task 2: Processes and the ProcessManager

In our kernel, each user-level process will contain only one thread. For each process, there will be a
single ProcessContolBlock object containing the per-process information, such as information about
open files and the process’s address space. Each ProcessControlBlock object will point to a Thread
object and each Thread object will point back to the ProcessControlBlock.

There may be other threads, called “kernel threads,” which are not associated with any user-level
process. There will only be a small, fixed number of kernel threads and these will be created at kernel
start-up time.

For now, we will only have a modest number of ProcessControlBlocks, which will make our testing
job a little easier, but in a real OS this constant would be larger.

 const MAX_NUMBER_OF_PROCESSES = 10

All processes will be preallocated in an array called processTable, which will be managed by the
ProcessManager object, much like the Thread objects are managed by the ThreadManager object.

Each process will be represented with an object of this class:

Project 4 Operating Systems

 Page 6

 class ProcessControlBlock
 superclass Listable
 fields
 pid: int
 parentsPid: int
 status: int -- ACTIVE, ZOMBIE, or FREE
 myThread: ptr to Thread
 exitStatus: int
 addrSpace: AddrSpace
 fileDescriptor: array [MAX_FILES_PER_PROCESS] of ptr to OpenFile
 methods
 Init ()
 Print ()
 PrintShort ()
 endClass

Each process will have a process ID (the field named pid). Each process ID will be a unique number,
from 1 on up.

Processes will be related to other processes in a hierarchical parent-child tree. Each process will know
who its parent process is. The field called parentsPid is a integer identifying the parent. One parent
may have zero, one, or many child processes. To find the children of process X, we will have to search
all processes for processes whose parentsPid matches X’s pid.

The ProcessControlBlock objects will be more like C structs than full-blown C++/Java objects: the
fields will be accessed from outside the class but the class will not contain many methods of its own.
Other than initializing the object and a couple of print methods, there will be no other methods for
ProcessControlBlock. We are providing the implementations for the Init, Print and PrintShort
methods.

Since we will have only a fixed, small number of ProcesControlBlocks, these are resources which must
be allocated. This is the purpose of the monitor class called ProcessManager.

At start-up time, all ProcessControlBlocks are initially FREE. As user-level processes are created,
these objects will be allocated and when the user-level process dies, the corresponding
ProcessControlBlock will become FREE once again.

In Unix and in our kernel, death is a two stage process. First, an ACTIVE process will execute some
system call (e.g., Exit()) when it wants to terminate. Although the thread will be terminated, the
ProcessControlBlock cannot be immediately freed, so the process will then become a ZOMBIE. At
some later time, when we are done with the ProcessControlBlock it can be FREEd. Once it is FREE, it
is added to the freeList and can be reused when a new process is begun.

The exitStatus is only valid after a process has terminated (e.g., a call to Exit()). So a ZOMBIE process
has a terminated thread and a valid exitStatus. The ZOMBIE state is necessary just to keep the exit
status around. The reason we cannot free the ProcessControlBlock is because we need somewhere to
store this integer.

Project 4 Operating Systems

 Page 7

For this project, we will ignore the exitStatus. It need not be initialized, since the default initialization
(to zero) is fine. Also, we will ignore the ZOMBIE state. Every process will be either ACTIVE or
FREE.

Each user-level process will have a virtual address space and this is described by the field addrSpace.
The code we have supplied for ProcessControlBlock.Init will initialize the addrSpace. Although the
addrSpace will not be used in this project, it will be discussed later in this document.

The myThread field will point to the process’s Thread, but we will not set it in this project.

The fileDescriptors field describes the files that this process has open. It will not be used in this
project.

Here is the definition of the ProcessManager object.

 class ProcessManager
 superclass Object
 fields
 processTable: array [MAX_NUM_OF_PROCESSES] of ProcessControlBlock
 processManagerLock: Mutex
 aProcessBecameFree: Condition
 freeList: List [ProcessControlBlock]
 aProcessDied: Condition
 methods
 Init ()
 Print ()
 PrintShort ()
 GetANewProcess () returns ptr to ProcessControlBlock
 FreeProcess (p: ptr to ProcessControlBlock)
 TurnIntoZombie (p: ptr to ProcessControlBlock)
 WaitForZombie (proc: ptr to ProcessControlBlock) returns int
 endClass

There will be only one ProcessManager and this instance (initialized at start-up time) will be called
processManager.

 processManager = new ProcessManager
 processManager.Init ()

The Print() and PrintShort() methods for ProcessControlBlocks are provided for you. You are to
implement the methods Init, GetANewProcess, and FreeProcess. The methods TurnIntoZombie and
WaitForZombie will be implemented in a later project and can be ignored for now.

The freeList is a list of all ProcessControlBlocks that are FREE. The status of a ProcessControlBlock
should be FREE if and only if it is on the freeList.

We assume that several threads may more-or-less simultaneously request a new ProcessControlBlock
by calling GetANewProcess. The ProcessManager should be a “monitor,” in order to protect the
freeList from concurrent access. The Mutex called processManagerLock is for that purpose. When a

Project 4 Operating Systems

 Page 8

ProcessControlBlock is added to the freeList, the condition aProcessBecameFree can be Signaled to
wake up any thread waiting for a ProcessControlBlock.

Initializing the ProcessControlManager should initialize

 the processTable array
 all the ProcessControlBlocks in that array
 the processManagerLock
 the aProcessBecameFree and the aProcessDied condition variables
 the freeList

All ProcessControlBlocks should be initialized and placed on the freeList.

The condition called aProcessDied is signaled when a process goes from ACTIVE to ZOMBIE. It will
not be used in this project, but should be initialized nonetheless.

The GetANewProcess method is similar to the GetANewThread method, except that it must also
assign a process ID. In other words, it must set the pid. The ProcessManager will need to manage a
single integer for this purpose. (Perhaps you might call it nextPid). Every time a ProcessControlBlock
is allocated (i.e., everytime GetANewProcess is called), this integer must be incremented and used to
set the process’s pid. GetANewProcess should also set the process’s status to ACTIVE.

The FreeProcess method must change the process’s status to FREE and add it to the free list.

Both GetANewProcess and FreeProcess are monitor entry methods.

Task 3: The Frame Manager

The lower portion of the physical memory of the BLITZ computer, starting at location zero, will contain
the kernel code. It is not clear exactly how big this will be, but we will allocate 1 MByte for the kernel
code. After that will come a portion of memory (called the “frame region”) which will be allocated for
various purposes. For example, the disk controller may need a little memory for buffers and each of the
user-level processes will need memory for “virtual pages.”

The area of memory called the frame region will be viewed as a sequence of “frames”. Each frame will
be the same size and we will have a fixed number of frames. For concreteness, here are some constants
from Kernel.h.

 PAGE_SIZE = 8192 -- in hex: 0x00002000
 PHYSICAL_ADDRESS_OF_FIRST_PAGE_FRAME = 1048576 -- in hex: 0x00100000
 NUMBER_OF_PHYSICAL_PAGE_FRAMES = 512 -- in hex: 0x00000200

This results in a frame region of 4 MB, so our kernel would fit into a 5 MByte memory.

Project 4 Operating Systems

 Page 9

The frame size and the page size are the same, namely 8K. In later projects, each frame will hold a page
of memory. For now, we can think of each frame as a resource that must be managed. We will not
really do anything with the frames. This is similar to the dice in the gaming parlor and the forks for the
philosophers... we were concerned with allocating them to threads, but didn’t really use them in any
way.

Each frame is a resource, like the dice of the game parlor, or the philosophers’ forks. From time to time,
a thread will request some frames; the frameManager will either be able to satisfy the request, or the
requesting thread will have to wait until the request can be satisfied.

For the purposes of testing our code, we will work with a smaller frame region of only a few frames.
This will cause more contention for resources and stress our concurrency control a little more. (For later
projects, we can restore this constant to the larger value.)

 NUMBER_OF_PHYSICAL_PAGE_FRAMES = 27 -- For testing only

Here is the definition of the FrameManager class:

 class FrameManager
 superclass Object
 fields
 framesInUse: BitMap
 numberFreeFrames: int
 frameManagerLock: Mutex
 newFramesAvailable: Condition
 methods
 Init ()
 Print ()
 GetAFrame () returns int -- returns addr of frame
 GetNewFrames (aPageTable: ptr to AddrSpace, numFramesNeeded: int)
 ReturnAllFrames (aPageTable: ptr to AddrSpace)
 endClass

There will be exactly one frameManager object, created at kernel start-up time.

 frameManager = new FrameManager
 frameManager.Init ()

With frames (unlike the ProcessControlBlocks) there is no object to represent each resource. So to
keep track of which frames are free, we will use the BitMap package. Take a look at it. Basically, the
BitMap class gives us a way to deal with long strings of bits. We can do things like (1) set a bit, (2)
clear a bit, and (3) test a bit. We will use a long bit string to tell which frames are in use and which are
free; this is the framesInUse field. For each frame, there is a bit. If the bit is 1 (i.e., is “set”) then the
frame is in use; if the bit is 0 (i.e., is “clear”) then the frame is free.

The frameManager should be organized as a “Monitor class.” The frameManagerLock is used to
make sure only one method at a time is executing in the FrameManager code.

We have provided the code for the Init, Print, and GetAFrame methods; you’ll need to implement
GetNewFrames, , and ReturnAllFrames.

Project 4 Operating Systems

 Page 10

The method GetANewFrame allocates one frame (waiting until at least one is available) and returns the
address of the frame. (Since there is never a need to return frames one at a time, there is no
“ReturnOneFrame” method.)

When the frames are gotten, the GetNewFrames method needs to make a note of which frames have
been allocated. It does this by storing the address of each frame it allocates (the address of the first byte
in each frame) into an AddrSpace object.

An AddrSpace object is used to represent a virtual address space and to tell where in physical memory
the virtual pages are actually located. For example, for a virtual address space with 10 pages, the
AddrSpace object will contain an ordered list of 10 physical memory addresses. These are the
addresses of the 10 “frames” holding the 10 pages in the virtual address space. However, the
AddrSpace object contains more information. For each page, it also contains information about
whether the page has been modified, whether the page is read-only or writable, etc. The information in
an AddrSpace object is stored in exactly the format required by the CPU’s memory management
hardware. In later projects, this will allow us to use the AddrSpace object as the current page table for a
running user-level process. At that time, when we switch to a user-level process, we’ll have to tell the
CPU which AddrSpace object to use for its page table. In addition to looking over the code in
AddrSpace, you may want to review the BLITZ architecture manual’s discussion of page tables.

The code in method

 GetNewFrames (aPageTable: ptr to AddrSpace, numFramesNeeded: int)

needs to do the following:

(1) Acquire the frame manager lock.
(2) Wait on newFramesAvailable until there are enough free frames to satisfy the request.
(3) Do a loop for each of the frames
 for i = 0 to numFramesNeeded-1
 (a) determine which frame is free (find and set a bit in the framesInUse BitMap)
 (b) figure out the address of the free frame
 (c) execute the following
 aPageTable.SetFrameAddr (i, frameAddr)
 to store the address of the frame which has been allocated
(4) Adjust the number of free frames
(5) Set aPageTable.numberOfPages to the number of frames allocated.
(6) Unlock the frame manager

The code in method

 ReturnAllFrames (aPageTable: ptr to AddrSpace)

needs to do more or less the opposite. It can look at aPageTable.numberOfPages to see how many are
being returned. It can then go through the page table and see which frames it possessed. For each, it can
clear the bit.

Project 4 Operating Systems

 Page 11

 for i = 0 to numFramesReturned-1
 frameAddr = aPageTable.ExtractFrameAddr (i)
 bitNumber = ...frameAddr...
 framesInUse.ClearBit(bitNumber)
 endFor

It will also need to adjust the number of free frames and “notify” any waiting threads that more frames
have become available.

You’ll need to do a Broadcast, because a Signal will only wake up one thread. The thread that gets
awakened may not have enough free frames to complete, but other waiting threads may be able to
proceed. A broadcast should be adequate, but perhaps after carefully studying the Game Parlor problem,
you will find a more elegant approach which wakes up only a single thread.

Also note that there is a possibility of starvation here. It is possible that one large process will be
waiting for a lot of frames (e.g., 100 frames). Perhaps there are many small processes which free a few
frames here and there, but there are always other small processes that grab those frames. Since there are
never more than a few free frames at a time, the big process will get starved.

This particular scenario for starvation, where processes are competing for frames) is a very real danger
in an OS and a “real” OS would need to ensure that starvation could not happen. However, in our
situation, it is acceptable to provide a solution that risks starvation.

Do not modify the code for the AddrSpace class.

Task 4: Change Condition Variables to Hoare Semantics

The code we have given you for the Signal method in the Condition class uses MESA semantics.
Change the implementation so that it uses Hoare semantics.

With MESA semantics, you tend to see code like this in monitors:

 NewResourcesHaveBecomeAvail: Condition

 In method A:
 ...
 numberAvail = numberAvail + 1
 NewResourcesHaveBecomeAvail.Signal()
 ...
 In method B:
 ...
 while (numberAvail == 0)
 NewResourcesHaveBecomeAvail.Wait()
 endWhile
 ...

Project 4 Operating Systems

 Page 12

The code in method B contains a while loop because there is a possibility that some other thread has
snuck in between the Signal and the Wait. When method A increments numberAvail, the condition
(“resources are now available for some other thread to use”) has been made true. Method A invokes
Signal to wake up some thread that is waiting for resources. The problem is that some other thread may
have run between the Signal and the reawakening of the Wait in method B. Other threads may have
come in and grabbed all the resources. So when the waiting thread is reawakened, it must always re-
check for resources (or more generally, it must check to ensure the condition is still true.)
Unfortunately, the condition may have changed back to false (i.e., no resources are available), so the
thread will have to wait some more.

And with MESA semantics, starvation becomes a bigger problem. What if the thread waits, wakes up,
and then goes back to sleep, over and over. Each time a Signal occurs, some other thread just happens
to get in first and steal the resource. Then the unlucky thread keeps waking up, testing, and going back
into a waiting sleep. This is a very real possibility if you have three threads and they are scheduled in
round-robin fashion. Thread A runs and signals thread C. Thread B runs and takes the resource.
Thread C runs, finds the condition is false and goes back to sleep. Then thread A runs again, and so on.

With Hoare semantics, the thread needing the resources can use code like this:

 ...
 if (numberAvail == 0)
 NewResourcesHaveBecomeAvail.Wait()
 endIf
 ...

Once the thread is reawakened, it can be sure that nothing has happened between the Signal and it; it can
be sure that no other thread has gotten into the monitor.

Starvation is easier to ensure against, too. If a thread needs a resource, it waits. We assume the waiting
queue is FIFO, so that the waiting thread will eventually be awakened. And when it wakes, it will
proceed forward, without looping. Therefore, each Signal wakes one thread which proceeds and, given
enough Signals to awaken any thread who went to sleep first, the thread in question will eventually get
awakened.

(Of course starvation-related bugs are still possible! For example, it might be that the code fails to
Signal the condition enough times, leaving some thread waiting forever. The contribution of the
monitor concept is to make it easier to write bug-free code, not to make it impossible to create bugs!)

All further design choices are up to you. We are not providing any testing code at all; you’ll have to
figure out how to test your code.

If you have time, you may go back to the previous tasks to incorporate your Hoare Semantics code in
their solutions, but remember to complete the above tasks before starting on the Hoare Semantics task.

Project 4 Operating Systems

 Page 13

Do not modify...

Do not modify any files except:

 Kernel.h
 Kernel.c

Do not create global variables (except for testing purposes). Do not modify the methods we have
provided.

Policy Concerning Project Deadlines

The previous projects were designed to get you up to speed and to let you know how much time the
programming portion of this class will take. Some of the tasks were intentionally quite difficult, in order
to challenge the ambitious students and to motivate all students to pay close attention to the subtleties of
concurrency problems and their solutions. The previous projects were independent, in the sense your
solution code did not need to be 100% correct in order to continue with the BLITZ kernel project.

Things change with this project. Buggy code in this project is not acceptable and will make it
impossible to complete the future projects.

In particular, you must complete tasks 1, 2 and 3 in this project before you can begin the next project.
You must get your code working and pass the test programs before going on, unlike the previous
projects in which successful completion was not a barrier to moving on. However, task 4 (the Hoare
Semantics task) is somewhat optional, in the sense that this code will not be needed in future projects.

If you are able to complete tasks 1, 2 and 3 on time, then hand in whatever you were able to achieve on
task 4 and move on to the next project. The Hoare Semantics task is provided as an extra challenge; if
you don’t have time for it, then do not allow yourself to fall behind on the next project.

If you are unable to complete tasks 1, 2 and 3, keep working on them until your code works 100%
correctly.

Students who have difficulty completing the projects on time will start to fall behind. Perhaps such a
student can worker a little harder to catch up on the next project and can still get the entire kernel
finished on time. Or perhaps the student will remain behind schedule and will be unable to complete
one or more of the later projects. Such a student will not be able to get the completed kernel working by
the end of the class.

We recommend that your instructor base grades, from this project onward, on program “style” only. We
recommend they simply not accept any programs that fail to work correctly, as defined by our test suite.
If there are problems with the output, the student must finish / fix the code and re-submit it when it is
working correctly, regardless of how long it takes. The final course grade will then be determined in
part by how many of the projects the student was able to complete before the end of the course.

Project 4 Operating Systems

 Page 14

Your instructor may alter this policy. Of course, your instructor’s policy takes precedence over what is
written here.

What to Hand In

Please submit hardcopy of your output and hardcopy your new versions of the following files:

 Kernel.h
 Kernel.c

For both files, please take a colored pen and circle exactly those parts you have added or changed.

Please submit all of Kernel.h.

For Kernel.c, please submit only the pages that have something circled. In other words, please discard
all pages that contain ONLY material that we are distributing. Please keep the remaining pages in order.

Also, if you have modified any part of a method or function, please hand in the entire function, so there
is a little context surrounding your code modifications.

As a second option, which will save on wasted paper, you may perform the deletions with an editor,
instead of discarding physical pages. You can cut out large sections of code, but please indicate where
material has been clipped out. Please replaced deleted material with a line like this

 XXXXXXXXXXXXXXXXXXX skipping XXXXXXXXXXXXXXXXXXX

to indicate which lines were removed. But please remember to circle your material with a colored pen.

In the course of testing, you will probably want to modify Main.c; but please hand in output using our
version. In other words, after you are done testing, make a new run using our version of the Main
package and hand in the output it produces.

For the Hoare Semantics task, we are not providing any testing material; you’ll have to devise some tests
on your own. Please hand in something showing how you have tested your code.

Please print your output in a fixed-width font. We don’t want to see output that looks like this:

 2 ProcessControlBlock pid=2, status=ACTIVE, parentsPid=0, exitStatus=0, name="----------",
addrSpace=
 addr entry Logical Physical Undefined Bits Dirty Referenced Writeable Valid
 ========== ========== ========== ========== ============== =====
========== ========= =====
 0x00093174: 0x00100003 0x00000000 0x00100000 YES YES

Project 4 Operating Systems

 Page 15

We prefer to see something more like this. Even though the long lines wrap around, at least things still
line up properly.

 2 ProcessControlBlock pid=2, status=ACTIVE, parentsPid=0, exitStatus=0, name="----------
", addrSpace=
 addr entry Logical Physical Undefined Bits Dirty Referenced
 Writeable Valid
 ========== ========== ========== ========== ============== ===== ==========
 ========= =====
 0x00093174: 0x00100003 0x00000000 0x00100000
 YES YES

In LARGE BLOCK LETTERS, write your full name on the first page. PLEASE STAPLE ALL
PAGES!

Sample Output

Here is the output produced by our solution code. You should see something similar, if your program
works correctly:

==================== KPL PROGRAM STARTING ====================
Initializing Thread Scheduler...
Initializing Process Manager...
Initializing Thread Manager...
Initializing Frame Manager...

***** THREAD-MANAGER TEST *****

123.4..1562.7839.1041112.13141.15....16....3295.17.8184..76.192010.111315...14..12..161..9.173188..7.19.
52.20....14410.12.91113...616...15571..18320....122..17..10..9161114586157.......4.123.1.18217.13..20...
9.19.516.1411.2..8..110.15.64.12.1618.9.7.132019..11.3.15..14.812..61.9...2.2018..10165.15.78..9...4.112
013.3..191815....714...17.11.151216.194...18.9.102076..11.12..15...14.84191013..93..2...1511518..8.714..
9.616.19..1..2015...813.42.1210.9......520.4.2.181116.14915..4.2.1.1117..5.8.1018.15.2.4.14.9.11..1.56.8
.2.15..4.1410..93..18.2013.2.15..7.17...1210914.8.20.2.....17515123.14.9.20..16.819.12.5.3.15.1.16.14.20
.8.3..513.12.15.18..1.8..209.193.5.6.18.7.8....20.14153.511.12.4.7.8.3.14.15.9.11.12...1518.16.3..14..11
17.12..4.5..1710..14.26.1.7..123.16.8.19.17.6.20.2.10..12.165.3.19.1.17..4...6.8.1220216.19..7.13.13.6.1
1.19.16..20.4.2.1.7..13.6.11.17.19..16.14.7..1....18....1013619.16.1711.4.7.20..13.18.16.19.10.6.17..411
.7..13.18.19...17.10.6..7.13..1918.17.10.6.....131817.19.106.13..17...10.13.17..13..

***** THREAD-MANAGER TEST COMPLETED SUCCESSFULLY *****

***** PROCESS-MANAGER TEST *****

123.4..1562783.9.104...1...11.738.12132149.156.5.1016.17..184...19..201.11138.714.12.3....5.26.17164.3.2
0.19..1812..629.14..1015...17.137..16.84.1820.1912...116.15.14.....572.3.89.116....10417513..15.12.1814.
..23..19.716.1204.1511...14..5..9.6131237..162....18.10.1718..5..1119.61620....9184..13.17..14108....612
711.159..2..11317....20.11..16..7146.119515.10.4.168...714..11.92.12.1..181720..14..6319...1219..7.168..
.2513...411.15..129.181.14..19.32.4..6.15.128.16..19.1410.5.20.9.7..46.16.11.3.13.17.14.9.8.7.1.16.2..5.
.192010.9.7..164.1.11...31317.5.9.7.6.12...19.13.11.20161.5.7.12.19.3.6..1110..113.5.12..719.11.6.2.3.20
.16.12.5.19.11.6..207.2..9.1416.5.19.15.6.11.20.2.14.9.12.4.5.17..1118.20.2.14.9...12.5154.11.20.6..152.
.18.16.14.10.5.20..63.17..9.102.1.14.11.18.13.10...739.2.16.20.14.11.10.8.3..76.16..20.13...8.3...18....
12194.10.138.3...918..20.1310..124.19.3.1.15.17.13..4.14.10.12...20.8..1913.4.17.10..18.8...13.19.17.4.1
8.15.8.10.17.13.19.18..15.8.18.17.10...15.8.18.17.15...18.17.15.18.17.15.18..15..15.

***** PROCESS-MANAGER TEST COMPLETED SUCCESSFULLY *****

Project 4 Operating Systems

 Page 16

***** FRAME-MANAGER TEST *****

1234.57.68.9110...32.5..74...8.69..101.32.45.7.....6.9.8.310215.4......10967138...2...5107.946...1.25..3
8.9..10.64..79.21..5..710.8.1.3.9.2..684.19..5..6310..48..9..65.1.7.53..2.8..93.10..12.47..1..4.1086..11
0..48.6..35..9.710..9.85.3..4.78.6..310.4.7.3..58.10.6..94.1..37.8..6.92.5..74..12.4.2.3.1..5.26.10.3.1.
7.5.8.10.3.1.9.6.8.10.3.1.4.6.10.8.3..31...134...513..1.83...3101..43..81..8..93.8.4..1.8.34..17.8.3.2.1
.4.8.6.4.2.8.47...83.1.5.34..1.84.3.1..84..28..10..4107...4110..5.410..18.3.1.8.3..41..105..8..4510...71
05..610..75..71...1085..7..410.75...175..9.75.10..58.7..4.52.7.6..7.6.5.4.10.85..10.6.7.47..5..106.7.510
.7..56..26..69..2..652..28.6.1.2..36..52..36..7.29...912..97..16...10.129..76...139..7.91..24..79..101..
82.6..91.2.6.9..71..93..61.10.9.1..62.8...298..810..48.1..6.810..1.210..8.510.8..110..9.8.10..2810..98..
710..79.8..7.210.6...27.109.8...1017.2.10.7.8.10.7..47.10.8.1.10..48.7..4.17..84.5.4.1.7..8.45.4..58.4..
7.5.104..56...56.4..765..10.5.67.4..9.5.6.7.5.6.45.8.6.4.7.6.1.5.9.6..26..105.4.6.10.2..23..3.1.23..6.5.
23...623.10.2.6..54.2..5.3.26.3.7.2.3.1.3.1.9.2...613..41.10...1410..10.6.1.104.1..9.10..219....31019.7.
.10.93..10.1.910..32.1.3..109.2.5.1.2.3.10..97.1.10.5.9.4.9.1.2.10.3.9.2.9..110..93.9.1.7..71.7..27.5.7.
4.7..42..7.410.7..48...18.75..87.10..4.8.2.8.46.7...984.5.8..9.5..74.58..10.54..7.8.5.47.8..65.4.7..5.84
.5.1.5.4.9.5.3.5.8..95.6.6..10.65.8.7.6..26...926..72..6.2.54.2.3.6..102..56.10.2...7610...8610.1..2..11
0.4..1210.6..5.101.9..21.6..110.2..410..81.4.10..71..410.8.2.6.1.7..76.10.5.1..7.10.2.71..106.1..102.7.1
0.1.2.7..74.7..57.9..95.9..39..5..931..57..3.6..39.510.7..2.95.8.7...1039.2.9.8.9..2.5.310.5.2.5.7.9.1..
73.5..54..5.1.43.10.4.2...3.25.4.9..34.25.9..34.5..79..2.3.4.21.4.7.3.5..24.9..3.52.3.4.5.2..82.6.2.5.4.
7.2..94..3.2.9.6.1.6..69.6..56.7.6.4.2..46.9..46.9.6..3.69..49.6..92.6..39.5.9.3.9..9..79.8.8.1.9..86.2.
.89.6..29.6..89.8.2.8..96.8..8.6.8..98.4.8.9.8.4.8.6.8.4.8.6..3..3.2.3..93.8.3..63..83.9.3..3.2.3.8.9...
3..3.3.3.3.3.3.3.3.

Here is a histogram showing how many times each frame was used:
0:
**
**
**
**

1:
**
**
**
**

2:
**
**
**
**

XXXXXXXXXXXXXXXXXXX skipping XXXXXXXXXXXXXXXXXXX

24:
**
**
*
25:
**

26:
**

***** FRAME-MANAGER TEST COMPLETED SUCCESSFULLY *****

==================== KPL PROGRAM TERMINATION ====================

Project 4 Operating Systems

 Page 17

Coding Style

For all projects, please follow our coding style. Make your code match our code as closely as possible.

The goal is for it to be impossible to tell, just by looking at the indentation and commenting, whether we
wrote the code or you wrote the code. (Of course, your code will be circled!)

Please use our convention in labeling and commenting functions:

 ----------------------------- Foo ---------------------------------

 function Foo ()
 --
 -- This routine does....
 --
 var x: int
 x = 1
 x = 2
 ...
 x = 9
 endFunction

Methods are labeled like this, with both class and method name:

 ---------- Condition . Wait ----------

 method Wait (mutex: ptr to Mutex)
 ...

Note that indentation is in increments of 2 spaces. Please be careful to indent statements such as if,
while, and for properly.

