
September 18, 2007 Page F-1

The BLITZ Emulator

Harry H. Porter III, Ph.D.
Computer Science Department

Portland State University

Using The BLITZ Emulator

The BLITZ emulator is a program written in “C” which emulates the BLITZ architecture. In other
words, the emulator is a virtual machine which simulates in software the behavior of a BLITZ machine.
This program is named “blitz” and is run on a computer known as the “host” computer. When running
under Unix, for example, you may start the emulator by typing “blitz” at the Unix prompt.

The emulator begins by reading in a BLITZ program and loading it into memory. Normally, the BLITZ
executable file is called “a.out” but it can be given another name. The emulator begins by reading data
from “a.out” and loading it into its internal memory. In effect, the emulator begins by initializing the
main memory of the BLITZ machine, using the bytes in the “a.out” file.

As an example, assume there is a file called “test.s” containing a BLITZ assembly code program. The
following sequence can be used to assemble, link, and run this program. In this document, “%” is the
Unix prompt. We show user input as underlined, boldface.

 % asm test.s
 % lddd test.o
 % blitz

The program “asm” is the BLITZ assembler. It takes as input an assembly language program and
produces an object file called, in this case, “test.o”.

The second program (called “lddd”) is the BLITZ linker. It takes as input one or more object files and
produces an executable file called “a.out”. The executable file may be renamed with the “-o” command
line option.

The program called “blitz” is the emulator. It loads an executable file into the main memory of the
emulated BLITZ machine. By default, the emulator reads from a file called “a.out”, but another file may
be named on the command line.

The BLITZ emulator is command oriented. It accepts one command at a time and executes each
command before prompting for the next command.

 The Emulator

September 18, 2007 Page F-2

The emulator is meant to be run interactively, with “stdin” and “stdout” connected to an interactive user
interface. The BLITZ emulator uses the “>” character as a prompt. You type in commands after this
prompt and the result of each will be displayed.

One command is called “go”; this command begins executing BLITZ machine instructions. Other
commands allow you to do things like:

 (1) Look at (and change) the BLITZ registers
 (2) Look at (and change) the contents of the BLITZ memory
 (3) View the state of the BLITZ machine
 (4) Execute a single instruction at a time
 (5) Dis-assemble instructions from memory
 (6) Manipulate the I/O devices (the serial I/O and the disk)
 (7) Quit the emulator

The “quit” Command

The “quit” command (which may be abbreviated as “q”) will terminate the BLITZ emulator.

Before terminating, the emulator will print some execution statistics, reflecting all activity since the
emulator began (or since the last “reset” command).

 > quit
 Number of Disk Reads = 0
 Number of Disk Writes = 0
 Instructions Executed = 18560
 Time Spent Sleeping = 0
 Total Elapsed Time = 18560
 %

(The final “%” symbolizes the host / Unix prompt.)

The “go” Command

The “go” command (which may be abbreviated as “g”) is used to start execution of the emulator. Once
execution begins, the BLITZ machine will execute instructions until either an error is detected or the
BLITZ machine executes a “wait” or “debug” instruction.

Here is an example:

 > go
 Beginning execution...
 < output from the BLITZ program >
 Done! The next instruction to execute will be:
 000074: 01000000 wait
 >

 The Emulator

September 18, 2007 Page F-3

The “help” Command

When running the BLITZ emulator, you may type “help”. Below, we show the BLITZ emulator starting
up and the “help” command being executed. The “help” command may be abbreviated as “h”.

 % blitz
 ===
 ===== =====
 ===== The BLITZ Machine Emulator =====
 ===== =====
 ===== Copyright 2001, Harry H. Porter III =====
 ===== =====
 ===

 Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
 > h
 ==
 This program accepts commands typed into the terminal. Each command
 should be typed without any arguments; the commands will prompt for
 arguments when needed. Case is not significant. Some abbreviations
 are allowed, as shown. Typing control-C will halt execution.

 The available commands are:

 quit - Terminate this program
 q
 help - Produce this display
 h
 info - Display the current state of the machine
 i
 dumpMem - Display the contents of memory
 dm
 setmem - Used to alter memory contents
 fmem - Display floating point values from memory
 go - Begin or resume BLITZ instruction execution
 g
 step - Single step; execute one machine-level instruction
 s
 t - Single step; execute one KPL statement
 u - Execute continuously until next call, send, or return
 stepn - Execute N machine-level instructions
 r - Display all the integer registers
 r1 - Change the value of register r1
 ...
 r15 - Change the value of register r15
 float - Display all the floating-point registers
 f
 f0 - Change the value of floating-point register f0
 ...
 f15 - Change the value of floating-point register f15
 dis - Disassemble several instructions
 d - Disassemble several instructions from the current location
 hex - Convert a user-entered hex number into decimal and ascii
 dec - Convert a user-entered decimal number into hex and ascii
 ascii - Convert a user-entered ascii char into hex and decimal
 setI - Set the I bit in the Status Register
 setS - Set the S bit in the Status Register
 setP - Set the P bit in the Status Register
 setZ - Set the Z bit in the Status Register

 The Emulator

September 18, 2007 Page F-4

 setV - Set the V bit in the Status Register
 setN - Set the N bit in the Status Register
 clearI - Clear the I bit in the Status Register
 clearS - Clear the S bit in the Status Register
 clearP - Clear the P bit in the Status Register
 clearZ - Clear the Z bit in the Status Register
 clearV - Clear the V bit in the Status Register
 clearN - Clear the N bit in the Status Register
 setPC - Set the Program Counter (PC)
 setPTBR - Set the Page Table Base Register (PTBR)
 setPTLR - Set the Page Table Length Register (PTLR)
 pt - Display the Page Table
 trans - Perform page table translation on a single address
 cancel - Cancel all pending interrupts
 labels - Display the label table
 find - Find a label by name
 find2 - Find a label by value
 add - Add a new label, inserting it into the indexes
 reset - Reset the machine state and re-read the a.out file
 io - Display the state of the I/O devices
 read - Read a word from memory-mapped I/O region
 write - Write a word to memory-mapped I/O region
 raw - Switch serial input to raw mode
 cooked - Switch serial input to cooked mode
 input - Enter input characters for future serial I/O input
 format - Create and format a BLITZ disk file
 sim - Display the current simulation constants
 stack - Display the KPL calling stack
 st
 frame - Display the current activation frame
 fr
 up - Move up in the activation frame stack
 down - Move down in the activation frame stack

 ==
 >

Abbreviated Spellings of Some Commands

Some of the commands have abbreviation, which are easier to type. Here are the abbreviations.

 quit q
 help h
 go g
 dumpmem dm
 info i
 step s
 float f
 stack st
 frame fr

The “dumpmem” Command

The “dumpmem” command (which may be abbreviated “dm”) can be used to display the contents of the
BLITZ machine’s memory.

 The Emulator

September 18, 2007 Page F-5

Each byte of memory is displayed in hex, with 16 bytes per line. Addresses are displayed on the left. On
the right side, the same 16 bytes are displayed as ASCII, with non-printable characters displayed as
periods.

Many of the emulator commands require arguments. For example, the “dumpmem” command needs a
starting address and a length (in bytes). Each command should be typed on a line by itself. The emulator
will then prompt for any arguments that are needed.

Here is an example:

 > dm
 Enter the starting (physical) memory address in hex: 200
 Enter the number of bytes in hex (or 0 to abort): 20
 00000200: 546F 0000 547F 0000 548F 0000 549F 0000 To..T...T...T...
 00000210: 54AF 0000 54BF 0000 C0B0 00FF C1B0 FF04 T...T...........
 >

This command ignores page tables and virtual address spaces; it displays the actual (i.e., “physical”)
memory space.

The “setmem” Commands

The “setmem” command can be used to modify the contents of the BLITZ machine’s memory.

Here is an example:

 > setmem
 Enter the (physical) memory address in hex of the word to be modified: 4c
 The old value is:
 0x00004C: 0xC120FF04
 Enter the new value (4 bytes in hex): 123def
 0x00004C: 0x00123DEF
 >

The addresses used in this command are physical memory addresses; no page table translation is
performed. (For page table translation, see the “trans” command.)

Conversion between Hex, ASCII, and Decimal

Occasionally you may need to convert between hex and decimal or see what some ASCII character code
is. There are three commands that do such translations: “hex”, “dec”, and “ascii”.

Each command asks you to enter a value. The command then prints out the value in the other two
forms.

To see the ASCII code for some character, use the “ascii” command. For example:

 The Emulator

September 18, 2007 Page F-6

 > ascii
 Enter a single character followed by a newline/return: h
 hex: 0x00000068 decimal: 104 ascii: "...h"
 >

To translate a hex value into decimal, use the “hex” command.

 > hex
 Enter a value in hex: 2468abcd
 hex: 0x2468ABCD decimal: 610839501 ascii: "$h.."
 >

The “hex” command takes up to 4 bytes, which it will also display as four characters. You can also use
it to translate a single byte.

 > hex
 Enter a value in hex: 6a
 hex: 0x0000006A decimal: 106 ascii: "...j"
 >

The “dec” command can be used to translate decimal numbers into hex and into ASCII characters.

 > dec
 Enter a value in decimal: 107
 hex: 0x0000006B decimal: 107 ascii: "...k"
 >

The “dis” Command

The emulator includes a command called “dis” which can be used to disassemble memory.

Here is a fragment of a BLITZ assembly program:

 ...
 flush:
 push r1 ! save registers
 push r2 ! .
 flushLoop: ! loop
 cleari ! disable interrupts
 set outBufferCount,r1 ! r2 = outBufferCount
 load [r1],r2 ! .
 cmp r2,0 ! if (r2 == 0)
 be flushLoopEx ! break
 seti ! re-enable interrupts
 jmp flushLoop ! end
 flushLoopEx: ! .
 seti ! re-enable interrupts
 ...

Assume that the BLITZ emulator is running and this program has been loaded into memory.

Below is an example of the “dis” command. In this program, it turns out the above fragment was loaded
into bytes beginning at address 0x000180. Below, we ask the emulator to disassemble memory starting
at that address:

 The Emulator

September 18, 2007 Page F-7

 > dis
 Enter the beginning phyical address (in hex): 180
 flush:
 000180: 541F0000 push r1,[--r15]
 000184: 542F0000 push r2,[--r15]
 flushLoop:
 000188: 03000000 cleari
 00018C: C0100000 sethi 0x0000,r1
 000190: C1102088 setlo 0x2088,r1 ! decimal: 8328, ascii: " ."
(outBufferCount)
 000194: 6B210000 load [r1+r0],r2
 000198: 81020000 sub r2,0x0000,r0
 00019C: A200000C be 0x00000C ! targetAddr = flushLoopEx
 0001A0: 04000000 seti
 0001A4: A1FFFFE4 jmp 0xFFFFE4 ! targetAddr = flushLoop
 flushLoopEx:
 0001A8: 04000000 seti
 ...
 >

The first thing to notice is that the comments from the “.s” file are lost. The second thing to notice is that
the instructions are printed in greater detail than in the “.s” file.

Note that information about labels (such as “flush”, “flushLoop”, and “flushLoopEx”) is carried in the
“a.out” file. While label information is not technically part of the BLITZ program, this information is
used by the emulator when disassembling, to make the result more meaningful.

Each instruction is printed both in hex and in human-readable mnemonic form. Consider the instruction:

 0001A4: A1FFFFE4 jmp 0xFFFFE4 ! targetAddr = flushLoop

This instruction is at address 0x0001a4. It is a “jump” instruction (whose opcode is hex a1) and has a
relative offset of –28 (which is ffffe4 in hex). The disassembler adds the information (printed like a
comment) that the value 0xffffe4 would be the instruction labeled “flushLoop”.

Next, take a look at the following instruction from the “.s” file:

 cmp r2,0 ! if (r2 == 0)

The “cmp” instruction is a “synthetic instruction”. It is really assembled as a “sub” instruction which
places the result in “r0”. In other words, the result is discarded, although the condition codes are
modified. This instruction is disassembled as:

 000198: 81020000 sub r2,0x0000,r0

Next, look at the following instruction from the “.s” file:

 set outBufferCount,r1 ! r2 = outBufferCount

The “set” instruction is a “synthetic instruction”. It is really equivalent to 2 instructions, a “sethi”
followed by a “setlo”. It is disassembled as the following two lines. (The second line may wrap to a new
line in this document.)

 The Emulator

September 18, 2007 Page F-8

 00018C: C0100000 sethi 0x0000,r1
 000190: C1102088 setlo 0x2088,r1 ! decimal: 8328, ascii: " ."
(outBufferCount)

When the disassembler prints out values like 0x2088, it adds a comment. The comment gives the value
interpreted as a decimal number, interpreted as ASCII characters, and interpreted as an address label.
For this particular instruction, the label information is helpful and the decimal and ASCII information is
not.

The “dis” command disassembles about 30 instructions at a time. The “d” command will disassemble
another 30 instructions, beginning at whatever address the previous command ended on. Thus, by
entering “d” commands repeatedly, you can disassemble a lengthy program one page at a time.

The “reset” Command

When debugging a BLITZ program, it is sometimes desirable to give up and start over. The “reset”
command in the emulator will re-initialize the emulator and will re-read the “a.out” executable file. It
will also reset all registers to zero, reset the state of the I/O devices, and re-read the “.blitzrc” file (if it
exists) for any non-standard simulation parameters. The effect of “reset” is exactly as if the emulator had
been quit and then re-started.

A typical debugging session might involve editing, compiling, and assembling a BLITZ program in one
window, and running the emulator in a second window. After a bug has been found, the user would
switch to the editing window and re-build the program. Then, after switching to the emulator window,
the “reset” command could be used to re-read the newly built program.

Another common scenario involves trying to find a bug in a BLITZ program. Perhaps the bug has
already occurred (i.e., been encountered during execution). The “reset” command could then be used to
rerun the program from the beginning, in order to observe and more closely understand the bug.

The “info” Command

The command “i” (which is short for “info”) can be used to dump the entire state of the CPU. Here is an
example of the “i” command:

 > i
 ============================
 Memory size = 0x01000000 (decimal: 16777216)
 Page size = 0x00002000 (decimal: 8192)
 .text Segment
 addr = 0x00000000 (decimal: 0)
 size = 0x00002000 (decimal: 8192)
 .data Segment
 addr = 0x00002000 (decimal: 8192)
 size = 0x00002000 (decimal: 8192)
 .bss Segment
 addr = 0x00004000 (decimal: 16384)
 size = 0x00000000 (decimal: 0)
 ===== USER REGISTERS =====
 r0 = 0x00000000 (decimal: 0)

 The Emulator

September 18, 2007 Page F-9

 r1 = 0x00000000 (decimal: 0)
 r2 = 0x00000000 (decimal: 0)
 r3 = 0x00000000 (decimal: 0)
 r4 = 0x00000000 (decimal: 0)
 r5 = 0x00000000 (decimal: 0)
 r6 = 0x00000000 (decimal: 0)
 r7 = 0x00000000 (decimal: 0)
 r8 = 0x00000000 (decimal: 0)
 r9 = 0x00000000 (decimal: 0)
 r10 = 0x00000000 (decimal: 0)
 r11 = 0x00000000 (decimal: 0)
 r12 = 0x00000000 (decimal: 0)
 r13 = 0x00000000 (decimal: 0)
 r14 = 0x00000000 (decimal: 0)
 r15 = 0x00000000 (decimal: 0)
 ===== SYSTEM REGISTERS =====
 r0 = 0x00000000 (decimal: 0)
 r1 = 0x000000AA (decimal: 170 ascii: "...." waitMsg)
 r2 = 0x00002088 (decimal: 8328 ascii: ".. ." outBufCt)
 r3 = 0x00000000 (decimal: 0)
 r4 = 0x00000000 (decimal: 0)
 r5 = 0x00000000 (decimal: 0)
 r6 = 0x00000000 (decimal: 0)
 r7 = 0x00000000 (decimal: 0)
 r8 = 0x00000000 (decimal: 0)
 r9 = 0x00000000 (decimal: 0)
 r10 = 0x00000000 (decimal: 0)
 r11 = 0x00000000 (decimal: 0)
 r12 = 0x00000000 (decimal: 0)
 r13 = 0x00000000 (decimal: 0)
 r14 = 0x00000000 (decimal: 0)
 r15 = 0x00FFFF00 (decimal: 16776960 ascii: "....")
 ===== FLOATING-POINT REGISTERS =====
 f0 = 0x00000000 00000000 (value = 0)
 f1 = 0x00000000 00000000 (value = 0)
 f2 = 0x00000000 00000000 (value = 0)
 f3 = 0x00000000 00000000 (value = 0)
 f4 = 0x00000000 00000000 (value = 0)
 f5 = 0x00000000 00000000 (value = 0)
 f6 = 0x00000000 00000000 (value = 0)
 f7 = 0x00000000 00000000 (value = 0)
 f8 = 0x00000000 00000000 (value = 0)
 f9 = 0x00000000 00000000 (value = 0)
 f10 = 0x00000000 00000000 (value = 0)
 f11 = 0x00000000 00000000 (value = 0)
 f12 = 0x00000000 00000000 (value = 0)
 f13 = 0x00000000 00000000 (value = 0)
 f14 = 0x00000000 00000000 (value = 0)
 f15 = 0x00000000 00000000 (value = 0)
 ======================================
 PC = 0x00000074 (decimal: 116 ascii: "...t")
 PTBR = 0x00000000 (decimal: 0)
 PTLR = 0x00000000 (decimal: 0)
 ---- ---- ---- ---- ---- ---- --IS PZVN
 SR = 0x00000034 = 0000 0000 0000 0000 0000 0000 0011 0100
 I = 1 Interrupts Enabled
 S = 1 System Mode
 P = 0 Paging Disabled
 Z = 1 Zero
 V = 0 No Overflow
 N = 0 Not Negative
 ==============================

 The Emulator

September 18, 2007 Page F-10

 Pending Interrupts = 0x00000008
 SERIAL_INTERRUPT
 System Trap Number = 0x00000000
 Page Invalid Offending Address = 0x00000000
 Page Readonly Offending Address = 0x00000000
 Time of next timer event = 91091
 Time of next disk event = 2147483647
 Time of next serial in event = 91355
 Time of next serial out event = 2147483647
 Current Time = 90354
 Time of next event = 91091
 Time Spent Sleeping = 966
 Instructions Executed = 89388
 Number of Disk Reads = 0
 Number of Disk Writes = 0
 ==============================
 Next instruction to execute will be:
 000074: 01000000 wait
 >

Examining and Modifying Registers

The “r” command is used to display the contents of the integer registers.

 > r
 ===== SYSTEM REGISTERS =====
 r0 = 0x00000000 (decimal: 0)
 r1 = 0x000000AA (decimal: 170 ascii: "...." waitMsg)
 r2 = 0x00002088 (decimal: 8328 ascii: ".. ." outBufCt)
 r3 = 0x00000000 (decimal: 0)
 r4 = 0x00000000 (decimal: 0)
 r5 = 0x00000000 (decimal: 0)
 r6 = 0x00000000 (decimal: 0)
 r7 = 0x00000000 (decimal: 0)
 r8 = 0x00000000 (decimal: 0)
 r9 = 0x00000000 (decimal: 0)
 r10 = 0x00000000 (decimal: 0)
 r11 = 0x00000000 (decimal: 0)
 r12 = 0x00000000 (decimal: 0)
 r13 = 0x00000000 (decimal: 0)
 r14 = 0x00000000 (decimal: 0)
 r15 = 0x00FFFF00 (decimal: 16776960 ascii: "....")
 ==============================
 >

At any instant, the BLITZ machine is either in “System Mode” or “User Mode”, as determined by the
“S” bit in the status word. The BLITZ machine has two sets of registers; the “r” command will display
whichever register set is in use. If the machine is in System Mode, the system registers will be displayed
and if the machine is in User Mode, the user registers will be displayed.

You may also modify individual integer registers with commands such as “r3” and “r12”. For example:

 > r1
 SYSTEM r1 = 0x000000AA (decimal: 170)
 Enter the new value (in hex): 123abc
 SYSTEM r1 = 0x00123ABC (decimal: 1194684)
 >

 The Emulator

September 18, 2007 Page F-11

To display the contents of the floating-point registers, the “float” command (which may be abbreviated
“f”), can be used:

 > f
 ===== FLOATING-POINT REGISTERS =====
 f0 = 0x00000000 00000000 (value = 0)
 f1 = 0x00000000 00000000 (value = 0)
 f2 = 0x00000000 00000000 (value = 0)
 f3 = 0x00000000 00000000 (value = 0)
 f4 = 0x00000000 00000000 (value = 0)
 f5 = 0x00000000 00000000 (value = 0)
 f6 = 0x00000000 00000000 (value = 0)
 f7 = 0x00000000 00000000 (value = 0)
 f8 = 0x00000000 00000000 (value = 0)
 f9 = 0x00000000 00000000 (value = 0)
 f10 = 0x00000000 00000000 (value = 0)
 f11 = 0x00000000 00000000 (value = 0)
 f12 = 0x00000000 00000000 (value = 0)
 f13 = 0x00000000 00000000 (value = 0)
 f14 = 0x00000000 00000000 (value = 0)
 f15 = 0x00000000 00000000 (value = 0)
 ======================================
 >

You may also modify individual floating-point registers with commands such as “f3” and “f12”. For
example:

 > f5
 f5 = 0x00000000 00000000 (value = 0)
 Enter the new value (e.g., 1.1, -123.456e-10, nan, inf, -inf): -5.7
 f5 = 0xC016CCCC CCCCCCCD (value = -5.7)
 >

The “Auto-Go” Option

Normally, the emulator begins by asking for a command. It executes the command, displays the result,
and asks for the next command in a loop. The emulator can also be set to begin execution automatically.
This is called the “auto-go” feature and may be specified using the command line option “-g”.

 % blitz –g

The “auto-go” option causes the emulator to begin executing the BLITZ program immediately. Only if
errors occur, will the emulator go into command-line mode. It will display an error message and ask the
user to enter a command. If the program terminates without any errors, then the emulator will also
terminate.

Single-Stepping Machine Instructions

The “step” command (which may be abbreviated “s”) can be used to single-step the emulator.

 The Emulator

September 18, 2007 Page F-12

Entering this command will cause a single BLITZ machine instruction to be executed, and control to be
returned to the emulator command interface. After the instruction is executed, the emulator will show
the instruction that is due to be executed next (not the instruction that was executed) so you can stop
before an instruction of interest.

In the following example, three instructions are executed.

 > s
 Done! The next instruction to execute will be:
 000078: A1FFFFE0 jmp 0xFFFFE0 ! targetAddr = busywait
 > s
 Done! The next instruction to execute will be:
 busywait:
 loop:
 000058: 6B310000 load [r1+r0],r3
 > s
 Done! The next instruction to execute will be:
 00005C: 88030002 and r3,0x0002,r0 ! decimal: 2, ascii: ".."
 >

Executing a large number of instructions using the “step” command quickly becomes tedious. To speed
up things, you can use the “stepn” command. The “stepn” instruction begins by asking you how many
instructions you wish to execute. It then executes this many instructions and suspends execution.

An example of the “stepn” instruction appears next. The program being executed prints the message
“Hello, world”. In this example, we execute 77 instructions, which is enough to print the first part of the
message. We see the characters “Hello, ” displayed right after the “Beginning execution...” message.

 > stepn
 Enter the number of instructions to execute: 77
 Beginning execution...
 Hello, Done! The next instruction to execute will be:
 00006C: A2000010 be 0x000010 ! targetAddr = loopExit
 >

Debugging KPL Programs

Consider this program, written in the KPL programming language. (Line numbers have been added.)

 1 header Hello
 2 uses System
 3 functions
 4 main ()
 5 endHeader

 1 code Test
 2
 3 function main ()
 4 print ("Hello, world...\n")
 5 foo ()
 6 endFunction
 7
 8 function foo ()
 9 var x: int = 1

 The Emulator

September 18, 2007 Page F-13

 10 bar (x + 1)
 11 endFunction
 12
 13 function bar (a: int)
 14 var y: int = a + 1
 15 test (y + 1)
 16 endFunction
 17
 18 function test (b: int)
 19 var z: int = b + 1
 20 print ("The value of z is ")
 21 printInt (z)
 22 nl ()
 23 debug
 24 endFunction
 25
 26 endCode

Here are the commands needed to compile, assemble, and link this program:

 % kpl Test
 % asm Test.s
 % kpl System -unsafe
 % asm System.s
 % lddd Test.o System.o runtime.o –o Test

To execute the program, the emulator is invoked and the “go” command is issued:

 % blitz Test
 ===
 ===== =====
 ===== The BLITZ Machine Emulator =====
 ===== =====
 ===== Copyright 2001, Harry H. Porter III =====
 ===== =====
 ===

 Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
 > go
 Beginning execution...
 ==================== KPL PROGRAM STARTING ====================
 Hello, world...
 The value of z is 5

 **** A 'debug' instruction was encountered *****
 Done! The next instruction to execute will be:
 0016AC: 87D00017 or r0,0x0017,r13 ! decimal: 23, ascii: ".."
 >

This program prints a message and then calls function “foo”. The function “foo” calls function “bar”
which then calls function “test”. The function “test” prints the value of a variable and then executes the
“debug” statement.

The compiler translates the KPL “debug” statement into the “debug” machine instruction. When
executed, the “debug” instruction causes the emulator to immediately suspend execution, print the
message

 **** A 'debug' instruction was encountered *****

 The Emulator

September 18, 2007 Page F-14

and re-enter the command-line mode. The user may now inspect the state of the BLITZ machine.

The “stack” command can be used to run through the activation record stack and print information
showing where, in each currently active function, execution is suspended.

 > stack
 Function/Method Frame Addr Execution at...
 ==================== ========== =====================
 test 00FFFEA8 Test.c, line 23
 bar 00FFFEC4 Test.c, line 15
 foo 00FFFEE0 Test.c, line 10
 main 00FFFEF8 Test.c, line 5
 Bottom of activation frame stack!
 >

At the top of the stack, we see that we are executing in the function “test”. Furthermore, we can see the
source code location of the statement being executed. The “debug” statement is on line 23 in the file
named “Test.c”. The function “test” was called from the function “bar” and the call occurs on line 15.

The “stack” command assumes a KPL program has been running. The command examines the contents
of memory and extracts the information from the runtime stack. If memory has been corrupted, this
command might print erroneous information. Nonetheless, the “stack” command is useful in debugging
KPL programs.

The “frame” command can be used to see the current values of local variables. For example:

 > frame
 ===== Frame number 0 (where StackTop = 0) =====
 Function Name: test
 Filename: Test.c
 Execution now at: line 23
 Frame Addr: 00FFFEA8
 frameSize: 12
 totalParmSize: 4
 ==========
 sp--> -20 00FFFE94: 00000005
 -16 00FFFE98: 00000005
 -12 00FFFE9c: 000011D8
 R.D.ptr: -8 00FFFEA0: 000016C0
 r13: -4 00FFFEA4: 0000000F
 fp: 0 00FFFEA8: 00FFFEC4
 RetAddr: 4 00FFFEAc: 000015CC
 ==========
 Args: 8 00fffeb0: 00000004

 PARAMETERS AND LOCAL VARIABLES WITHIN THIS FRAME:
 ===
 b: int
 8 00FFFEB0: 00000004 value = 4
 _temp_21
 -12 00FFFE9C: 000011D8
 z: int
 -16 00FFFE98: 00000005 value = 5
 ===
 >

 The Emulator

September 18, 2007 Page F-15

In this example, the “frame” command prints information from the frame on the top of the stack, which
is the frame of the currently executing function. We see the name of the function (“test”) and, within it,
where execution currently is (line 23 in file “Test.c”). Next, we see the exact contents of the frame in
hex (between the ====== markers), as well as offsets and memory addresses.

Then we see the names of the parameters and local variables of this function, along with their types and
current values. The values are given in hex. For some types of data (namely integers, doubles,
Booleans, characters), the data is also printed in human-readable form. For pointers, we also see the
word of data pointed to. The compiler generates temporary variables with names such as “_temp_21”
and the values of these are also printed.

The stack may contain many frames. In this example, the stack contains 4 frames. When debugging
some programs, we may need to look at more than just the top (currently executing) frame. To look at
other frames, we use the “up” and “down” commands.

The “stack”, “up”, “down” commands all use a notion of the “current frame position”. The “down”
command moves the current position down the stack (away from the top), while the “up” command
moves it back up. The “frame” command simply prints the current frame.

For example, the “down” command will take us to the frame of the function that called “test”:

 > down
 ===== Frame number 1 (where StackTop = 0) =====
 Function Name: bar
 Filename: Test.c
 Execution now at: line 15
 Frame Addr: 00FFFEC4
 frameSize: 12
 totalParmSize: 4
 ==========
 -20 00FFFEB0: 00000004
 -16 00FFFEB4: 00000003
 -12 00FFFEB8: 00000004
 R.D.ptr: -8 00FFFEBC: 000015E0
 r13: -4 00FFFEC0: 0000000A
 fp: 0 00FFFEC4: 00FFFEE0
 RetAddr: 4 00FFFEC8: 00001514
 ==========
 Args: 8 00FFFECC: 00000002

 PARAMETERS AND LOCAL VARIABLES WITHIN THIS FRAME:
 ===
 a: int
 8 00FFFECC: 00000002 value = 2
 _temp_16
 -12 00FFFEB8: 00000004
 y: int
 -16 00FFFEB4: 00000003 value = 3
 ===
 >

Here, we see the same information as we saw for the other frame. We see the name of the function
“bar”, where execution is (line 15), and the current values of the variables (“a” has value 2 and “y” has
value 3).

 The Emulator

September 18, 2007 Page F-16

Single-Stepping KPL Programs

Consider the “Test” program discussed above. Let’s restart the program by issuing the “reset”
command, which resets the CPU and reloads memory.

 > reset
 Resetting all CPU registers and re-reading file "Test"...
 >

We can single-step the program by issuing the “t” command, which will execute a single KPL statement
and re-enter the emulator’s command-line mode. Here is an example showing the execution of several
KPL statements:

 > t
 About to execute FUNCTION ENTRY
 in main (Test.c, line 3) time = 516
 > t
 About to execute FUNCTION CALL (external function)
 in main (Test.c, line 4) time = 523
 > t
 Hello, world...
 About to execute FUNCTION CALL
 in main (Test.c, line 5) time = 531
 > t
 About to execute FUNCTION ENTRY
 in foo (Test.c, line 8) time = 550
 > t
 About to execute FUNCTION CALL
 in foo (Test.c, line 10) time = 561
 > t
 About to execute FUNCTION ENTRY
 in bar (Test.c, line 13) time = 580
 > t
 About to execute FUNCTION CALL
 in bar (Test.c, line 15) time = 594
 > t
 About to execute FUNCTION ENTRY
 in test (Test.c, line 18) time = 613
 > t
 About to execute FUNCTION CALL (external function)
 in test (Test.c, line 20) time = 625
 > t
 The value of z is 5About to execute FUNCTION CALL
 in test (Test.c, line 22) time = 642
 > t
 About to execute FUNCTION ENTRY
 in nl (System.c, line 48) time = 655
 > t
 About to execute FUNCTION CALL (external function)
 in nl (System.c, line 49) time = 659
 > t

 About to execute RETURN statement
 in nl (System.c, line 49) time = 666
 >

 The Emulator

September 18, 2007 Page F-17

The “t” command executes one KPL statement and then stops. After stopping, the “t” command prints
information about the next statement to be executed.

The execution of one KPL statement involves the execution of several machine instructions. Although
the algorithm used by the emulator to determine exactly where the statement boundaries are is not 100%
accurate, it will allow the programmer to walk through a program’s execution at higher-level than
machine instructions.

However, with large programs, single-stepping can get very tedious. When this happens, the
programmer should consider the “u” command.

The “u” command will execute many KPL statements at once, and will stop only when a function or
method is entered. The “u” command will also stop just before a return is performed.

The “u” command can be used to execute a KPL program quickly, allowing the programmer to get to
the point of interest. Once there, the programmer can single-step using the “t” command, or look at the
variables with the “stack” and “frame” commands.

In the above example, there were no statements other than call and return statements, so there is little
reason to use the “u” command.

The next example involves the execution of a larger program, which is not shown. The “u” command is
used to enter and leave different methods and functions. Once in the method called “AddToEnd”, the
“t” command is used to single-step execution.

 > u
 About to execute METHOD ENTRY
 in List::IsEmpty (List.c, line 49) time = 11087
 > u
 About to execute RETURN statement
 in List::IsEmpty (List.c, line 52) time = 11098
 > u
 About to execute METHOD ENTRY
 in Thread::Yield (Kernel.c, line 290) time = 11168
 > u
 About to execute FUNCTION ENTRY
 in SetInterruptsTo (Kernel.c, line 178) time = 11197
 > u
 About to execute RETURN statement
 in SetInterruptsTo (Kernel.c, line 198) time = 11229
 > u
 About to execute METHOD ENTRY
 in List::Remove (List.c, line 33) time = 11270
 > u
 About to execute RETURN statement
 in List::Remove (List.c, line 46) time = 11316
 > u
 About to execute METHOD ENTRY
 in List::AddToEnd (List.c, line 20) time = 11379
 > t
 About to execute IF statement
 in List::AddToEnd (List.c, line 24) time = 11381
 > t
 About to execute SEND
 in List::AddToEnd (List.c, line 24) time = 11383
 > t

 The Emulator

September 18, 2007 Page F-18

 About to execute METHOD ENTRY
 in List::IsEmpty (List.c, line 49) time = 11404
 > t
 About to execute IF statement
 in List::IsEmpty (List.c, line 51) time = 11406
 > t
 About to execute ELSE statement
 in List::IsEmpty (List.c, line 54) time = 11413
 > t
 About to execute RETURN statement
 in List::IsEmpty (List.c, line 54) time = 11415
 > t
 About to execute THEN statement
 in List::AddToEnd (List.c, line 25) time = 11427
 > t
 About to execute ASSIGN statement
 in List::AddToEnd (List.c, line 25) time = 11429
 > t
 About to execute RETURN statement
 in List::AddToEnd (List.c, line 24) time = 11440
 >

Note that the “time” displayed shows that this example spanned the execution of 353 machine
instructions. The time value can be used in conjunction with the “stepn” command to quickly get to the
same point again.

Next, we discuss a “trick” which allows us to effectively “back up” program execution. This can be
useful when debugging. We say “effectively” back up because the CPU cannot actually be run in
reverse.

Let’s assume that after single-stepping the program for a while, we realize that a bug may involve
something that happened a little earlier. In the above example, let’s assume that we want to back up the
execution and see the value of the variable “p” directly before the assignment statement is executed. In
other words, we want to back-up execution to time 11429 and look at the value of “p” before the
assignment statement. Unfortunately, the assignment statement has already been executed, possibly
changing the value of “p.”

To “back up” the CPU, we execute the “reset” command to restart the program, followed by “stepn” to
get to the time of interest, followed by the “frame” command to see the variable’s value.

 > reset
 Resetting all CPU registers and re-reading file "os"...
 > stepn
 Enter the number of instructions to execute: 11429
 Beginning execution...
 ==================== KPL PROGRAM STARTING ====================
 Initializing Thread Scheduler...
 Initializing Idle Process...
 Done! The next instruction to execute will be:
 0049C4: 8B1E000C load [r14+0x000C],r1 ! decimal: 12
 > frame
 ===== Frame number 0 (where StackTop = 0) =====
 Function Name: List::AddToEnd
 Filename: List.c
 Execution now at: line 25
 Frame Addr: 0002F410

 The Emulator

September 18, 2007 Page F-19

 frameSize: 12
 totalParmSize: 8
 ==========
 sp--> -20 0002F3FC: 0102D334
 -16 0002F400: 0002D334
 -12 0002F404: 00000000
 R.D.ptr: -8 0002F408: 00004A50
 r13: -4 0002F40C: 00000142
 fp: 0 0002F410: 0002F44C
 RetAddr: 4 0002F414: 000123D4
 ==========
 Args: 8 0002F418: 0002D334
 12 0002F41C: 0002E404

 PARAMETERS AND LOCAL VARIABLES WITHIN THIS FRAME:
 ===
 self: ptr
 4 0002F414: 000123D4 --> 000123D4: 8B1EFFDC
 p: ptr
 12 0002F41C: 0002E404 --> (_P_Kernel_idleThread) 0002E404:
00011914
 _temp_19
 -12 0002F404: 00000000
 _temp_17
 -16 0002F400: 0002D334
 ===

The “fmem” Command

The “fmem” command is similar to the “dumpmem” command. Both commands display the contents of
the BLITZ machine’s main memory. The “dumpmem” command displays the contents in hex and in
ASCII. The “fmem” command interprets the memory as holding floating-point values and print these.

Here is an example of the same block of memory. First it is displayed using the “dumpmem” command.
Second it is displayed with “fmem”.

 > dm
 Enter the starting (physical) memory address in hex: 40
 Enter the number of bytes in hex (or 0 to abort): 100
 00000040: C010 00FF C110 FF00 C020 00FF C120 FF04
 00000050: C040 0000 C140 0084 6B31 0000 8803 0002 .@...@..k1......
 00000060: A2FF FFF8 6C54 0000 8105 0000 A200 0010 lT..........
 00000070: 8044 0001 6F52 0000 A1FF FFE0 0200 0000 .D..oR..........
 00000080: A1FF FFB8 4865 6C6C 6F2C 2077 6F72 6C64 Hello, world
 00000090: 210A 0D00 0000 0000 0000 0000 0000 0000 !...............
 000000A0: 0000 0000 0000 0000 0000 0000 0000 0000
 000000B0: 0000 0000 0000 0000 0000 0000 0000 0000
 000000C0: 0000 0000 0000 0000 0000 0000 0000 0000
 000000D0: 0000 0000 0000 0000 0000 0000 0000 0000
 000000E0: 0000 0000 0000 0000 0000 0000 0000 0000
 000000F0: 0000 0000 0000 0000 0000 0000 0000 0000
 00000100: 0000 0000 0000 0000 0000 0000 0000 0000
 00000110: 0000 0000 0000 0000 0000 0000 0000 0000
 00000120: 0000 0000 0000 0000 0000 0000 0000 0000
 00000130: 0000 0000 0000 0000 0000 0000 0000 0000
 > fmem
 Enter the beginning phyical address (in hex): 40
 Dumping 256 bytes as 32 double-precision floating-points...

 The Emulator

September 18, 2007 Page F-20

 000040: C01000FF C110FF00 value = -4.00097562471615
 000048: C02000FF C120FF04 value = -8.00195125129495
 000050: C0400000 C1400084 value = -32.0000230371961
 busywait:
 loop:
 000058: 6B310000 88030002 value = 2.18316291430363e+208
 000060: A2FFFFF8 6C540000 value = -4.19865739775962e-140
 000068: 81050000 A2000010 value = -9.56960205083827e-304
 000070: 80440001 6F520000 value = -2.22507629429519e-307
 000078: A1FFFFE0 02000000 value = -6.40656817048898e-145
 000080: A1FFFFB8 48656C6C value = -6.40644681309642e-145
 000088: 6F2C2077 6F726C64 value = 3.3315582820848e+227
 000090: 210A0D00 00000000 value = 1.59166957876397e-149
 000098: 00000000 00000000 value = 0
 0000A0: 00000000 00000000 value = 0
 0000A8: 00000000 00000000 value = 0
 0000B0: 00000000 00000000 value = 0
 0000B8: 00000000 00000000 value = 0
 0000C0: 00000000 00000000 value = 0
 0000C8: 00000000 00000000 value = 0
 0000D0: 00000000 00000000 value = 0
 0000D8: 00000000 00000000 value = 0
 0000E0: 00000000 00000000 value = 0
 0000E8: 00000000 00000000 value = 0
 0000F0: 00000000 00000000 value = 0
 0000F8: 00000000 00000000 value = 0
 000100: 00000000 00000000 value = 0
 000108: 00000000 00000000 value = 0
 000110: 00000000 00000000 value = 0
 000118: 00000000 00000000 value = 0
 000120: 00000000 00000000 value = 0
 000128: 00000000 00000000 value = 0
 000130: 00000000 00000000 value = 0
 000138: 00000000 00000000 value = 0
 >

Changing the Program Counter

The “setpc” command can be used to change the Program Counter (the “PC” register). The PC indicates
where the next instruction will be fetched from. Changing it will, in effect, cause a branch to the new
location.

 > setpc
 Please enter the new value for the program counter (PC): 40
 PC = 0x00000040 (decimal: 64 ascii: '@')
 Next instruction to execute will be:
 000040: C01000FF sethi 0x00FF,r1 ! 0x00FFFF00 = 16776960
 >

Interrupt Processing

Recall that the Status Registers in the CPU contains the following bits:

 The Emulator

September 18, 2007 Page F-21

 I: Interrupts Enabled
 S: System Mode
 P: Paging Enabled
 Z: Result is Zero
 V: Overflow Occurred
 N: Result is Negative

The state of these bits controls the execution behavior of the CPU; for details, consult the document
titled “The BLITZ Architecture”. These bits can be changed with the following commands:

 setI - Set the I bit
 setS - Set the S bit
 setP - Set the P bit
 setZ - Set the Z bit
 setV - Set the V bit
 setN - Set the N bit
 clearI - Clear the I bit
 clearS - Clear the S bit
 clearP - Clear the P bit
 clearZ - Clear the Z bit
 clearV - Clear the V bit
 clearN - Clear the N bit

For example:

 > sets
 The S bit is now 1: System Mode.
 > cleari
 The I bit is now 0: Interrupts Disabled.
 >

The contents of the Status Register is displayed as part of the “info” command. The leading 26 of the 32
bits in this registers are unused and will always be zero.

 > info
 ...
 ---- ---- ---- ---- ---- ---- --IS PZVN
 SR = 0x0000001F = 0000 0000 0000 0000 0000 0000 0001 1111
 I = 0 Interrupts Disabled
 S = 1 System Mode
 P = 0 Paging Disabled
 Z = 0 Not Zero
 V = 0 No Overflow
 N = 0 Not Negative
 ...
 >

You may see which interrupts have been signaled with the “info” command.

 > info
 ...
 Pending Interrupts = 0x00000002
 TIMER_INTERRUPT
 ...
 >

Unmaskable interrupts will be processed on the next cycle. Maskable interrupts will either be processed
(if the “I” bit is set) or will remain pending until the “I” bit is changed to 1.

 The Emulator

September 18, 2007 Page F-22

Pending interrupts can be cleared with the “cancel” command. This command will cancel both maskable
and unmaskable interrupts.

 > cancel
 All pending interrupts have been cancelled.
 >

When an interrupt is processed, an extra “step” cycle is required. This is illustrated in the next example.
Prior to what is shown below, we assume a TIMER_INTERRUPT is pending but the “I” bit in the
Status Register is “0”. Thus, the interrupt is temporarily masked.

The first command is a “step”, which executes the instruction directly before the “store”. If we were to
execute another “step” command at this point, the “store” instruction would be executed.

 > s
 Done! The next instruction to execute will be:
 000E84: 6F120000 store r1,[r2+r0]
 >

Instead of another “step”, we issue the “seti” command, which changes the Status Register. Now the
interrupt is no longer masked and interrupt processing will occur next.

 > seti
 The I bit is now 1: Interrupts Enabled.
 >

Next, we issue a “step” command. No instruction is executed during this step cycle. Instead, the
interrupt processing is initiated.

 > s
 Processing an interrupt and jumping into interrupt vector.
 Done! The next instruction to execute will be:
 TimerInterrupt:
 000004: 08000000 reti
 >

In this program, TIMER_INTERRUPTs are dealt with by simply returning; no computation is
necessary. Therefore, this program has previously loaded a return-from-interrupt instruction (“reti”) into
the interrupt vector in low memory, instead of a jump to the interrupt handling routine, which might be
more typical of an operating system. In this program, the interrupt handler effectively consists of this
single “reti” instruction.

Finally, we issue another “step” command. During this step cycle, the “reti” instruction is executed and
control returns to the interrupted code.

 > s
 Done! The next instruction to execute will be:
 000E84: 6F120000 store r1,[r2+r0]
 >

If we were to execute another “step” command at this point, the “store” instruction would be executed.

 The Emulator

September 18, 2007 Page F-23

Coping with Errors During Emulation

The BLITZ architecture describes how the BLITZ machine will respond to various instructions.
Included in the BLITZ architecture is information about how various error conditions are handled. For
example, an attempt to divide by zero will cause an Arithmetic Exception. Such an error will not
interrupt the emulator.

In fact, all interrupts, including asynchronous hardware interrupts and synchronous exceptions during
instruction execution, will be processed as specified in the BLITZ architecture. Interrupts will not stop
instruction emulation.

However, there are several error conditions that the emulator will watch for. These primarily concern the
I/O devices. For example, if the BLITZ program fails to fetch a character on the serial input before the
next character arrives, this error will be caught by the emulator. Whenever the emulator catches an error,
it will print an error message and immediately suspend instruction execution. The command loop will
then be entered.

The BLITZ architecture requires word alignment on word-length data. I considered requiring double-
word alignment for double-length data, just as many real machines do, but I decided not to require
double alignment, since it complicates things. The presence of word alignment certainly gives the idea
of alignment requirements, while having several flavors of alignment (e.g., halfword, word, double)
adds little more than additional complexity.

Probabilistic and Pseudorandom Behavior

The BLITZ emulator includes the simulation of several asynchronous and probabilistic events. Most of
the BLITZ architecture is deterministic, but things like interrupts will occur at random times. In
addition, the emulator can simulate things like random disk read/write errors and statistical variation of
timer interrupts.

In order to simulate such asynchronous or probabilistic behavior, the emulator uses a random number
generator to determine when asynchronous or probabilistic events are to occur.

The random number generator supplies a sequence of pseudo-random numbers from an initial “random
number seed”. The emulator uses numbers from this sequence in determining when to generate
asynchronous events, etc. Since all random numbers are pseudo-random, the emulator should run
exactly identically each time, as long as the initial seed is identical. Even though probabilistic behavior
is being simulated, the behavior of the emulator will be fully repeatable. This is useful in debugging
BLITZ programs.

To test the behavior of non-deterministic programs, you may supply a different random number seed
when the emulator starts up. This will cause asynchronous events to be signaled at slightly different
times. There is a default random seed which can be overridden with the “-r” command line option:

 % blitz –r 123654

Each time the emulator is run with the same random seed, the results should be identical.

 The Emulator

September 18, 2007 Page F-24

Unfortunately, there is a second source of non-determinism, besides the random number generator. Input
for the “serial I/O” device may come from either a file or directly from the user, via the keyboard. If the
input comes from a file, each run of the emulator using the same seed will be identical; there can be no
variation. However, if the input comes from the keyboard, then the program may execute differently
from run to run, even though the random number seed is the same. This is because the timing of the
serial input interrupts will be governed by the actual arrival times of input characters from the keyboard.
The BLITZ program will continue to execute (like any real CPU) waiting until the input actually arrives.
The exact timing of the interrupts will be dependent on the typing of input by the user. If the BLITZ
program is well-behaved, the input will be handled correctly, independently of the precise timing of
keystrokes, but if the program contains race conditions, its behavior may be non-repeatable.

Emulating the BLITZ Input/Output Devices

The BLITZ computer has two I/O devices. One is a serial I/O interface and the other is a disk.

The serial I/O interface is used for communicating with a human user. The BLITZ emulator will emulate
the serial I/O device by either getting input from the user (i.e., from “stdin”) or by getting input from a
file. If a file is used, it is specified with a command line option when the emulator is first invoked. For
example:

 % blitz –i InFileName

All output to the serial I/O device goes to “stdout”, unless it is re-directed with the “-o” command line
option:

 % blitz –o OutFileName

Normally, the “-i” and “-o” options will not be used. Normally, the serial I/O will go directly to the
terminal interface so the running BLITZ program will interact directly with the user.

The BLITZ disk device is emulated using a file on the host computer. All disk reads and disk writes will
be simulated by getting and putting data to this file. This file is named “DISK” by default, but a different
name can be given using a command line option to the emulator:

 % blitz –d DiskFileName

Memory-Mapped I/O

The BLITZ architecture has no instructions specifically for I/O. Instead, the BLITZ machine
communicates with various I/O devices using a technique called “memory-mapped I/O”. With this
approach, a region of physical memory is set aside for sending data to and receiving data from the
various I/O devices of the BLITZ machine.

To send data to an external device, the CPU writes data into one of several special, predfined memory
addresses. Instead of storing the bits in physical memory, the data is passed through to one of the I/O
devices as described below. Likewise, to retrieve data from an external device, the CPU reads from one
of several special, predefined memory locations. Instead of fetching data from main memory, the I/O

 The Emulator

September 18, 2007 Page F-25

device provides data. Thus, the memory “load” and “store” commands may be used to interact with and
control the external I/O devices.

Currently, there are only two devices supported by the BLITZ emulator: a serial interface and a disk
drive.

Communication with the serial I/O device is through two memory addresses, called

 SERIAL_STATUS_WORD
 SERIAL_DATA_WORD

Communication with the disk device is through four memory addresses, called

 DISK_STATUS_WORD
 DISK_COMMAND_WORD
 DISK_MEMORY_ADDRESS_REGISTER
 DISK_SECTOR_NUMBER_REGISTER

The following constants describe where the memory-mapped region of memory is and where the various
I/O addresses are located. (The values given here are the defaults. They may be changed by specifying
different values in the “.blitzrc” file.)

 MEMORY_MAPPED_AREA_LOW 0x00FFFF00
 MEMORY_MAPPED_AREA_HIGH 0x00FFFFFF

 SERIAL_STATUS_WORD_ADDRESS 0x00FFFF00
 SERIAL_DATA_WORD_ADDRESS 0x00FFFF04

 DISK_STATUS_WORD_ADDRESS 0x00FFFF08
 DISK_COMMAND_WORD_ADDRESS 0x00FFFF08
 DISK_MEMORY_ADDRESS_REGISTER 0x00FFFF0C
 DISK_SECTOR_NUMBER_REGISTER 0x00FFFF10
 DISK_SECTOR_COUNT_REGISTER 0x00FFFF14

Sometimes, these special, predefined memory-mapped I/O addresses are called “registers”, although
they are quite different from any CPU registers. Also note that the same address may be used for an
input address and for an output address. (This is the case for DISK_STATUS_WORD_ADDRESS and
DISK_COMMAND_WORD_ADDRESS.)

The memory-mapped region of physical memory is the range of addresses from
MEMORY_MAPPED_AREA_LOW to MEMORY_MAPPED_AREA_HIGH, inclusive. Normally it is
256 bytes, as shown above.

All addresses in the memory-mapped region besides those mentioned above for the serial I/O device and
the disk device are unassigned and should not be used. Any attempt to load or store from those addresses
will be caught by the emulator. An error message will be printed and instruction emulation will be
suspended.

Note that these constants are shared by both the emulator and the program being emulated. A change to
one of these values would require a change to both the BLITZ emulator as well as the BLITZ program
itself.

 The Emulator

September 18, 2007 Page F-26

The Serial I/O Device

The BLITZ computer includes a serial I/O device, which allows BLITZ programs to communicate with
the outside world via a two-way, asynchronous stream of bytes. The serial device is also referred to as
the “terminal” device.

The serial I/O interface is intended to be a simplified model of a typical interface to a standard UART
serial interface chip, which in turn interfaces to something like an RS-232 terminal or modem port.

The serial I/O interface might be connected to either a display terminal (such as an old-fashioned
teletype terminal, which transmits and receives ASCII characters, one-by-one), or to a modem, or to an
RS-232 type serial interface. With the BLITZ emulator, the serial I/O interface is connected to either the
terminal you are using (e.g., Unix “stdin” and “stdout”) or to a file (using the –i and –o options on the
emulator command line). By using stdin and stdout, you can communicate with a running BLITZ
program simply by typing on the terminal.

The serial I/O interface is asynchronous and two-way, which means that bytes may be transmitted in
either direction simultaneously, with no timing connection between the input and output flows.

The communication is through two memory-mapped registers, called

 SERIAL_STATUS_WORD
 SERIAL_DATA_WORD

At any moment, the serial I/O device is either busy sending a character or not, and it is busy receiving a
character or not. To determine the status of the device, a BLITZ program may read from the
SERIAL_STATUS_WORD location in memory. The word retrieved will have this format:

 byte 1 byte 2 byte 3 byte 4
 ==== ==== ==== ==== ==== ==== ==== ====
 0000 0000 0000 0000 0000 0000 0000 00RA

 R = OutputReady bit (1=ready, 0=not ready)
 A = CharacterAvailable bit (1=available, 0=not available)

When the device is ready and capable of sending a new character to the terminal, the OutputReady bit
will be 1. To start the transmission of a character to the terminal, the BLITZ program should write a
word to the SERIAL_DATA_WORD. The least significant byte of this word should contain a byte of
data, which will normally be an ASCII character. (The remaining bytes in word are ignored.) The
OutputReady bit will change to a zero, and the character will be transmitted. The transmission is not
instantaneous, but is in fact a rather slow process, so the OutputReady bit will stay zero for some time.
Later, after the transmission is completed, the device will become ready to receive another character for
transmission, and the OutputReady bit will once again change to 1.

From time-to-time keys may be pressed on the keyboard (or bytes will be received on the serial I/O
interface). Each time a key is pressed, the CharacterAvailable bit will change to 1. The BLITZ program
may then get the character by reading from the SERIAL_DATA_WORD. Whenever the BLITZ
program reads the SERIAL_DATA_WORD, the CharacterAvailable bit will change to 0. It is the
BLITZ program’s responsibility to retrieve the characters from the SERIAL_DATA_WORD in a timely
way; if the data is not retrieved, it will be lost when the next character comes in from the keyboard. (It is

 The Emulator

September 18, 2007 Page F-27

not an error to re-read from the SERIAL_DATA_WORD, before CharacterAvailable becomes true
again for the next character.)

Every time a transmission is completed and the OutputReady bit is changed to 1, a SerialInterrupt will
occur. Also, every time a character reception is completed and the CharacterAvailable bit is changed to
1, a SerialInterrupt will occur. (However, when these bits are changed to zero, there will be no
interrupt.) The BLITZ program may read from the SERIAL_STATUS_WORD as often as desired to
check the state of the bits. The program should never write to the SERIAL_STATUS_WORD.

The emulator checks for several errors that may occur regarding the proper operation of the serial I/O
device. If the BLITZ program writes to the SERIAL_STATUS_WORD, an error message will be
displayed and instruction execution will be suspended immediately. If the BLITZ program attempts to
send a character to the terminal (by writing to the SERIAL_DATA_WORD) before the terminal is ready
to display the next character (i.e., while OutputReady is false), an error message will be displayed and
instruction execution will be suspended immediately. If a character is input (i.e., a key is pressed),
before the previous input character was retrieved (i.e., before the BLITZ program has read from the
SERIAL_DATA_WORD), then an error message will be displayed and instruction execution will be
suspended immediately.

Echoing and Buffering of Raw and Cooked Serial Input

With an operating system such as Unix, some rather complex processing is done on character input and
output to a terminal. For example, whenever the user hits a key on the keyboard, the character is
normally echoed by Unix and then simply added to a buffer area. The characters in the buffer are
accumulated as they are typed, but are not given to the user-level program until the user hits the ENTER
key. Then, the entire line of characters is given to the user-level program all at once.

Unix also handles several control characters specially. For example, when the user hits the backspace
key, Unix will send characters to the terminal to back up the cursor, display a blank to over-write the
previous character, and finally reposition the cursor.

When the user hits the ENTER key, many terminals will transmit the ASCII “CR” character, not the
ASCII “NL” character to the computer. Recall that the CR and NL characters are different.

 ASCII name C notation Hex value Decimal value
 ========== ========== ========= =============
 “newline” NL (or LF) ‘\n’ 0A 10
 “return” CR ‘\r’ 0D 13

Unix generally echoes the CR character with two characters: the CR followed by the NL. Then, an NL
character is added to the buffer, instead of the CR character which was actually received.

With Unix, all of this processing is completely configurable, making it possible to use many different
types of terminal, each with slightly different behaviors, while not requiring any change to user-level
programs. For example, all programs expect lines to end with NL, even though some terminals may send
different characters when the ENTER key is pressed.

 The Emulator

September 18, 2007 Page F-28

When the BLITZ emulator uses “stdin” and “stdout” for the serial I/O device, the emulator may run in
either of two modes: “raw” or “cooked”. The default is “cooked” mode, but you may switch the
emulator between modes with the “raw” and “cooked” commands.

 > raw
 Future terminal input will be "raw".
 > cooked
 Future terminal input will be "cooked".
 >

You may also use the command line option “-raw” to put the emulator in “raw” mode. This is
particularly useful when running with the “auto-go” command line option.

Raw mode is intended to allow the emulator to function more exactly like a real computer. All buffering,
echoing, and special processing of certain control characters is left to the BLITZ program. The Unix I/O
processing is turned off and the emulator simply passes the keystrokes through to the BLITZ serial I/O
device. The BLITZ program must perform all buffering, echoing, and special processing required. If the
BLITZ program fails to echo characters, it may appear that your computer is dead, since it does not
seem to respond to keystrokes. Also, the BLITZ program must deal with any differences in different
types of terminals. The terminal you are using may supply a “CR”, an “LF”, or some other character
when ENTER is pressed; the BLITZ program must be able to handle each. The bottom line is that this
puts a lot of extra work on the BLITZ program.

In “cooked” mode, the emulator runs like most normal Unix user-level programs, making use of all the
special terminal configuration software included in Unix. This allows you to use whichever terminal you
use normally, without having to put terminal-specific code into your BLITZ program. Whenever you
type input to be supplied to the BLITZ serial I/O interface, it is buffered, echoed, and processed by Unix
first. For example, you may correct typing errors with the backspace key and the BLITZ program will
see only the corrected data. In cooked mode, you must type a full line, followed by ENTER before the
BLITZ program will see any characters at all. The BLITZ program will always sees a single NL
character at the end of every line of input.

To accurately model a real OS, your BLITZ program should echo all characters received on the serial
input. When you are using cooked input, this has the effect of causing a double echoing of input: First
the Unix terminal drivers will echo the characters as you type them. Then, at the end of the line when
you type ENTER, all characters will be supplied one at a time to the serial I/O device, and the BLITZ
program will then (presumably) echo each character. Thus, the line just entered will be redisplayed a
second time, if the BLITZ program is echoing its input properly.

When debugging programs that process serial input using interrupts, it is useful to be able to control
exactly which characters are read from the serial device. However, it is difficult to type input to the
BLITZ computer while also entering commands to the emulator. To alleviate this problem, you may use
the “input” command, which allows you to type ahead several characters, which will be supplied to the
serial interface when it is ready.

 The Emulator

September 18, 2007 Page F-29

 > input
 The following characters will be supplied as input to the BLITZ serial
 input before querying the terminal:
 ""
 You may add to this type-ahead buffer now.
 The terminal is now in "cooked" mode.
 Enter characters followed by control-D...
 abc
 def
 ^D
 The following characters will be supplied as input to the BLITZ serial
 input before querying the terminal:
 "abc\ndef\n"
 >

To determine the status of the serial I/O device, the “io” command may be used. This command displays
information about the serial device, the disk device, and some information about the status of the CPU.

 > io
 ========== Serial I/O ==========
 Output Status: Ready
 Input Status: Character Not Available
 Current Input Char: '\0' (already fetched by CPU)
 The following characters are currently in the type-ahead buffer:
 "abc\ndef\n"
 Input coming from: stdin
 Input Mode: Cooked
 ========== Disk I/O ==========
 ...
 >

The “wait” Instruction

The BLITZ architecture includes an instruction called “wait”. This instruction will suspend further
instruction execution and the CPU will go into a low-power wait/sleep state. The only thing that will
cause instruction execution to resume is an interrupt. If no interrupts occur the CPU will remain forever
dormant.

How does the emulator handle the “wait” instruction? When does the emulator suspend emulation and
return to the command interface?

The emulator handles the “wait” instruction as follows: If there is disk activity that is not yet complete
or serial output activity that is not yet complete, then the emulator will continue until the activity is
completed. Otherwise, the emulator may suspend emulation, depending on the status of the serial input.

If serial input is coming from “stdin” and interrupts are enabled, then the emulator will wait for user
input and then will continue execution by signaling an interrupt. If serial input is coming from “stdin”
but interrupts are disabled, then the emulation will halt. If input is coming from a file and we have
reached the end of file, then emulation will halt. Otherwise, if there is more left in the input file,
emulation will continue.

Note that the emulator will ignore timer interrupts in determining whether to halt emulation. There will
always be another timer interrupt, so timer interrupts would keep emulation going forever and emulation

 The Emulator

September 18, 2007 Page F-30

would never halt if the emulator paid attention to timer events. In other words, if execution is suspended
on a “wait” instruction and the only thing that could cause an interrupt is a timer event, then emulation
will be suspended.

(Note that this may cause difficulties in certain kinds of programs. Imagine a program that simply counts
timer interrupts in order to wait a certain amount of time, and then prints a message after (say) 10
interrupts. The program begins by initializing a counter then performs a “wait”. This program will not be
emulated correctly, since the emulator will suspend emulation after the “wait” is encountered.)

The Disk Device

A BLITZ computer includes a disk drive, and the BLITZ emulator simulates a virtual disk drive.

Real disk drives store bytes in sectors. For example a sector might have 8K bytes. The sector is the
minimum unit of data transfer. The main operations are “read a sector” and “write a sector”. Sectors are
arranged in tracks. Each track traces out a concentric circle on a rotating magnetic platter.

Generally a disk has several platters rotating together on one axis. Consequently, tracks are arranged in
cylinders. For example, a disk with 5 platters and a read/write head on each side of each platter would
have 10 tracks per cylinder, All 10 of the read/write heads are attached to a single, comb-like arm, so all
10 heads move together. To read any sector within a single cylinder, no arm movement is necessary if
the arm is already positioned on the correct cylinder.

To read or write a sector, the read-write heads must be moved to the correct cylinder. This is called the
“seek time”. The seek involves physically moving the arm, the time of which is proportional to the
length moved. After the movement, a “settle” time occurs, during which the vibrations in the arm
created by the movement die out. In addition, the disk platter is constantly rotating, so an additional
delay involves waiting until the desired sector comes under one of the read/write heads. This is called
the “rotational delay”. Finally, the data is transferred at a constant rate determined by how fast the disk
is spinning. This is called the “transfer time” or “transfer rate” and is measured in bytes per second.

Often disks are described using “transfer rate” and “average access time”. The “access time” is the sum
of the seek time, the settle time, and the rotational delay, and will vary from operation to operation
depending on where the disk heads are before the operation.

In the virtual disk provided by the BLITZ emulator, things are simplified. First, there is only one platter
and only one side is used; in other words, there is just one track per cylinder. Consequently, we view the
disk as an integral number of tracks. Each track contains a number of sectors, numbered from zero up to
some maximum sector number, given by SECTORS_PER_TRACK.

The size of each sector is identical to the page size in the machine, which is 8K bytes (i.e., 8192 bytes).

The actual disk data is kept in a separate file on the host system. Normally, this file is named “DISK”
and is opened when the BLITZ emulator begins. The size of the virtual disk will be an integral number
of tracks. The actual number of tracks will be determined based on the size of the DISK file, when the
emulator starts up. A different filename (other than “DISK”) may be specified with the “-d filename”
command line option to the BLITZ emulator.

 The Emulator

September 18, 2007 Page F-31

The DISK file can be created using an emulator command called “format”. The format command will
ask for the desired number of tracks. It will then create and initialize the file. This command can also be
used to change the size of the file.

The format of data stored in the DISK file should not be of concern to the BLITZ programmer, but it
consists of a 4 byte “magic number” at the beginning of the file, followed by N sectors of data bytes.
Thus, it has the following format:

 Size Description
 ==== ===
 4 Magic number 0x53504B64 (ASCII code for "BLZd")
 8192 Sector 0
 8192 Sector 1
 8192 Sector 2
 ...
 8192 Sector K-1

We can summarize the virtual disk as follows:

 Filename: "DISK"
 Number of Tracks per Disk: <variable>
 Number of Sectors per Track: 16
 Number of Bytes per Sector: 8K (8192 bytes)

We can measure the size of the disk in tracks:

 NUMBER_OF_TRACKS

or in sectors:

 NUMBER_OF_SECTORS = NUMBER_OF_TRACKS * SECTORS_PER_TRACK

or in bytes:

 NUMBER_OF_BYTES = NUMBER_OF_SECTORS * BYTES_PER_SECTOR

For example, a typical DISK file might have the following size:

 NUMBER_OF_TRACKS = 100
 NUMBER_OF_SECTORS = 1,600
 NUMBER_OF_BYTES = 13,107,200

The sectors on the disk are number from 0 up to the maximum:

 0, 1, 2, ... , NUMBER_OF_SECTORS-1

The basic operations that the BLITZ programmer can do are:

 Read K Sectors into Memory
 Write K Sectors from Memory

The disk is controlled by reading and writing the following memory-mapped I/O registers. Each is a 32-
bit word in the memory-mapped I/O region of physical memory.

 The Emulator

September 18, 2007 Page F-32

 DISK_STATUS_WORD
 DISK_COMMAND_WORD
 DISK_MEMORY_ADDRESS_REGISTER
 DISK_SECTOR_NUMBER_REGISTER
 DISK_SECTOR_COUNT_REGISTER

The disk is either busy reading or writing, or is free and available. The DISK_STATUS_WORD may be
read at any time. The following values indicate the status of the disk and the result of the last disk
operation.

 DiskBusy 0x00000000
 OperationCompletedOK 0x00000001
 OperationCompletedWithError1 0x00000002
 OperationCompletedWithError2 0x00000003
 OperationCompletedWithError3 0x00000004
 OperationCompletedWithError4 0x00000005
 OperationCompletedWithError5 0x00000006

The following commands may be written to the DISK_COMMAND_REGISTER:

 DiskReadCommand 0x00000001
 DiskWriteCommand 0x00000002

The “read” operation will transfer 1 or more sectors from the disk into memory. To perform a read
operation, the BLITZ program must take the following steps.

First, the DISK_SECTOR_NUMBER_REGISTER, DISK_SECTOR_COUNT_REGISTER and the
DISK_MEMORY_ADDRESS_REGISTER must be loaded (in any order). Then the program must
move the “DiskReadCommand” to the DISK_COMMAND_WORD.

The number of sectors to be transferred must be placed in the DISK_SECTOR_COUNT_REGISTER.
This should be between 1 and NUMBER_OF_SECTORS. The sector from the disk should then be
loaded into the DISK_SECTOR_NUMBER_REGISTER. This number must be between 0 and
NUMBER_OF_SECTORS-1. It is an error to attempt to read or write beyond the end of the disk. The
DISK_MEMORY_ADDRESS should be loaded with the physical memory address into which to place
the data. It is an error to attempt transfer data to/from any address which is not in physical memory. In
addition, you may not transfer data to/from any address in the memory-mapped I/O area.

After the command has been issued, the disk will become busy for some time. When the operation is
finished, the status will change to either “Operation Completed OK” or “Operation Completed with
Error”.

The “write” operation is very similar to the “read” operation: First, the following registers should be
loaded:

 DISK_MEMORY_ADDRESS_REGISTER
 DISK_SECTOR_NUMBER_REGISTER
 DISK_SECTOR_COUNT_REGISTER

in any order. Then the “DiskWriteCommand” command should be written to the
DISK_COMMAND_WORD. The disk will be busy while the data is moved from the memory to the
disk. Then the disk status will change to “Operation Completed OK” or “Operation Completed with
Error”.

 The Emulator

September 18, 2007 Page F-33

After issuing a DiskReadCommand or a DiskWriteCommand, the disk will become busy for a while.
When the operation completes (either normally or with an error), a DiskInterrupt will occur and the disk
status will change to OperationCompletedOK or OperationCompletedWithError.

The following are considered errors and will result in the DISK_STATUS_WORD being
“OperationCompletedWithError”. The status will remain unchanged until the next “read” or “write”
operation is initiated (i.e., until the DISK_COMMAND_WORD is written to).

(Error 1) The MEMORY_ADDRESS_REGISTER is not aligned on a memory page boundary. The last
13 bits of the REGISTER should always be zeros. Also, the SECTOR_COUNT_REGISTER is not
positive.

(Error 2) The MEMORY_ADDRESS_REGISTER and length specification include memory addresses
that are not legal physical addresses or that are in the memory-mapped I/O area.

(Error 3) The DISK_SECTOR_NUMBER_REGISTER and length specification include a sector that is
not between 0 and NUMBER_OF_SECTORS-1.

(Error 4) The DISK had some sort of a I/O error. This could be a “soft error”, in which case the
operation will succeed if re-tried, or it could be a “hard error”, in which case the operation will never
succeed if re-tried. It is assumed that the disk controller itself has re-tried the operation a few times.
Therefore, any errors reported here can be assumed to be “hard” errors. It is better for the BLITZ
program to print a message for the user and give up when I/O errors occur. Perhaps the user can correct
the error (e.g., by reconnecting a disk cable) and re-try the operation later.

In a real disk, each sector is written with a header and trailer, and error-checking codes are computed
and written on the disk, in addition to the actual data bytes. In a most disk drives, headers and trailers are
handled entirely by the disk controller, not by the CPU. The BLITZ system emulates such an approach,
assuming headers and trailers are handled by the device controller. Consequently the details of the
header, trailer, and error-checking codes are not specified. The BLITZ program only needs to concern
itself with the actual bytes of data, not with headers, trailers, or error-checking codes.

Several things can go wrong during a disk operation and there can be “soft” or “hard” errors during and
disk operation. For example, a disk read operation may have a failure in the error-checking process; this
would be a soft error, since it will generally disappear upon a re-try. Or the disk may be disconnected or
the power may be turned off, which would be a hard error.

(Error 5) Invalid Command Word. The program has attempted to store something besides
DiskReadCommand or DiskWriteCommand into the command register.

In addition to checking for the errors listed above, the BLITZ emulator also performs additional error
checking on the use of the disk device by the BLITZ program. The emulator checks to make sure that
the DISK_SECTOR_NUMBER_REGISTER, DISK_MEMORY_ADDRESS_REGISTER, and
DISK_SECTOR_COUNT_REGISTER are each loaded exactly once before each read or write
operation. It also checks to make sure that bytes in the memory buffer being transferred to or from disk
are not accessed by the CPU while the disk operation is still in progress. If any errors like this are
detected, a message is displayed and BLITZ instruction execution is immediately suspended.

 The Emulator

September 18, 2007 Page F-34

When a DISK file is created or enlarged by the “format” command, the data in the file must be
initialized. The “format” command will initialize all new sectors with ASCII character data giving the
sector number. The data will consist of a pattern of repeating characters. For example, assume that a
DISK file with just 1 track (16 sectors) is created. Here is how the file would be initialized:

 00000000: 5350 4B64 3C2D 2D2D 4245 4749 4E4E 494E BLZd<---BEGINNIN
 00000010: 4720 4F46 2053 4543 544F 522D 2D2D 2D2D G OF SECTOR-----
 00000020: 2D2D 2D2D 2D2D 2D2D 2D2D 6469 736B 2073 ----------disk s
 00000030: 6563 746F 7220 3030 3030 3030 2064 6973 ector 000000 dis
 00000040: 6B20 7365 6374 6F72 2030 3030 3030 3020 k sector 000000
 00000050: 6469 736B 2073 6563 746F 7220 3030 3030 disk sector 0000
 00000060: 3030 2064 6973 6B20 7365 6374 6F72 2030 00 disk sector 0
 00000070: 3030 3030 3020 6469 736B 2073 6563 746F 00000 disk secto
 00000080: 7220 3030 3030 3030 2064 6973 6B20 7365 r 000000 disk se
 00000090: 6374 6F72 2030 3030 3030 3020 6469 736B ctor 000000 disk
 000000A0: 2073 6563 746F 7220 3030 3030 3030 2064 sector 000000 d
 000000B0: 6973 6B20 7365 6374 6F72 2030 3030 3030 isk sector 00000
 000000C0: 3020 6469 736B 2073 6563 746F 7220 3030 0 disk sector 00
 000000D0: 3030 3030 2064 6973 6B20 7365 6374 6F72 0000 disk sector
 000000E0: 2030 3030 3030 3020 6469 736B 2073 6563 000000 disk sec
 000000F0: 746F 7220 3030 3030 3030 2064 6973 6B20 tor 000000 disk
 00000100: 7365 6374 6F72 2030 3030 3030 3020 6469 sector 000000 di
 00000110: 736B 2073 6563 746F 7220 3030 3030 3030 sk sector 000000
 00000120: 2064 6973 6B20 7365 6374 6F72 2030 3030 disk sector 000
 ...
 00001FA0: 3020 6469 736B 2073 6563 746F 7220 3030 0 disk sector 00
 00001FB0: 3030 3030 2064 6973 6B20 7365 6374 6F72 0000 disk sector
 00001FC0: 2030 3030 3030 3020 6469 736B 2073 6563 000000 disk sec
 00001FD0: 746F 7220 3030 3030 3030 2D2D 2D2D 2D2D tor 000000------
 00001FE0: 2D2D 2D2D 2D2D 2D2D 2D2D 2D2D 2D2D 2D2D ----------------
 00001FF0: 2D2D 2D45 4E44 204F 4620 5345 4354 4F52 ---END OF SECTOR
 00002000: 2D2D 2D3E 3C2D 2D2D 4245 4749 4E4E 494E ---><---BEGINNIN
 00002010: 4720 4F46 2053 4543 544F 522D 2D2D 2D2D G OF SECTOR-----
 00002020: 2D2D 2D2D 2D2D 2D2D 2D2D 6469 736B 2073 ----------disk s
 00002030: 6563 746F 7220 3030 3030 3031 2064 6973 ector 000001 dis
 00002040: 6B20 7365 6374 6F72 2030 3030 3030 3120 k sector 000001
 00002050: 6469 736B 2073 6563 746F 7220 3030 3030 disk sector 0000
 00002060: 3031 2064 6973 6B20 7365 6374 6F72 2030 01 disk sector 0
 ...
 0001FF10: 6563 746F 7220 3030 3030 3135 2064 6973 ector 000015 dis
 0001FF20: 6B20 7365 6374 6F72 2030 3030 3031 3520 k sector 000015
 0001FF30: 6469 736B 2073 6563 746F 7220 3030 3030 disk sector 0000
 0001FF40: 3135 2064 6973 6B20 7365 6374 6F72 2030 15 disk sector 0
 0001FF50: 3030 3031 3520 6469 736B 2073 6563 746F 00015 disk secto
 0001FF60: 7220 3030 3030 3135 2064 6973 6B20 7365 r 000015 disk se
 0001FF70: 6374 6F72 2030 3030 3031 3520 6469 736B ctor 000015 disk
 0001FF80: 2073 6563 746F 7220 3030 3030 3135 2064 sector 000015 d
 0001FF90: 6973 6B20 7365 6374 6F72 2030 3030 3031 isk sector 00001
 0001FFA0: 3520 6469 736B 2073 6563 746F 7220 3030 5 disk sector 00
 0001FFB0: 3030 3135 2064 6973 6B20 7365 6374 6F72 0015 disk sector
 0001FFC0: 2030 3030 3031 3520 6469 736B 2073 6563 000015 disk sec
 0001FFD0: 746F 7220 3030 3030 3135 2D2D 2D2D 2D2D tor 000015------
 0001FFE0: 2D2D 2D2D 2D2D 2D2D 2D2D 2D2D 2D2D 2D2D ----------------
 0001FFF0: 2D2D 2D45 4E44 204F 4620 5345 4354 4F52 ---END OF SECTOR
 00020000: 2D2D 2D3E --->

 The Emulator

September 18, 2007 Page F-35

The “io” Command

The current status of the serial I/O device and the disk device can be seen with the “io” command. For
example:

 > io
 ========== Serial I/O ==========
 Output Status: Ready
 Input Status: Character Not Available
 Current Input Char: '\0' (already fetched by CPU)
 The following characters are currently in the type-ahead buffer:
 ""
 Input coming from: stdin
 Input Mode: Cooked
 ========== Disk I/O ==========
 The file used for the disk: "DISK"
 DISK File is currently opened.
 Disk size:
 Total Tracks = 3
 Total Sectors = 48
 Sectors per track = 16
 Current Status:
 Positioned at Sector = 0
 Current Disk Status = OPERATION_COMPLETED_OK
 Future Disk Status = OPERATION_COMPLETED_OK
 Area of memory being read from / written to:
 diskBufferLow = 0x00000000
 diskBufferHigh = 0x00000000
 Memory-Mapped Register Contents:
 DISK_MEMORY_ADDRESS_REGISTER = 0x00000000
 DISK_SECTOR_NUMBER_REGISTER = 0x00000000
 DISK_SECTOR_COUNT_REGISTER = 0x00000000
 Number of Disk Reads = 0
 Number of Disk Writes = 0
 ==============================
 CPU status:
 Interrupts: Disabled
 Mode: System
 Pending Interrupts:
 TIMER_INTERRUPT
 Time of next timer event........ 1001
 Time of next disk event......... 2147483647
 Time of next serial in event.... 0
 Time of next serial out event... 2147483647
 Current Time.................. 0
 Time of next event............ 0
 ==============================
 >

The I/O devices are activated by reading and writing words in the “memory-mapped” region of physical
memory.

You can do this from the command line in the emulator using the “read” and “write” commands. For
example, you can retrieve the status of the serial I/O device by reading from the
SERIAL_STATUS_WORD (at address 0x00ffff00) as follows:

 The Emulator

September 18, 2007 Page F-36

 > read
 This command can be used to read a word of memory that is in the
 memory-mapped I/O region, retrieving I/O device status or data.
 Enter the (physical) memory address in hex of the word to be
 read from: ffff00
 Reading word... address = 0xFFFF00 value = 0x00000002
 >

The value is “0x00000002”, which indicates that the output is ready to receive a character but that no
character is available on the input.

You can write a value to a memory-mapped word using the “write” command. If we write to the
SERIAL_DATA_WORD (i.e., address 0x00ffff04), it will cause a character to be written. In the
following example, we write a word containing the ASCII code for the letter “a”, which is 0x61. Notice
that there is an “a” printed out immediately.

 > write
 This command can be used to write to a word of memory that is in the
 memory-mapped I/O region, sending data or commands to the I/O device.
 Enter the (physical) memory address in hex of the word to be
 written to: ffff04
 Enter the new value (4 bytes in hex): 00000061
 aWriting word... address = 0xFFFF04 value = 0x00000061
 >

The “.blitzrc” File: Changing Emulation Parameters

There are a number of simulation parameters that may be changed. The parameters that can be changed
are listed below, along with their default values.

 KEYBOARD_WAIT_TIME 30000
 KEYBOARD_WAIT_TIME_VARIATION 100
 TERM_OUT_DELAY 100
 TERM_OUT_DELAY_VARIATION 10
 TIME_SLICE 5000 (0=no timer interrutps)
 TIME_SLICE_VARIATION 30
 DISK_SEEK_TIME 10000
 DISK_SETTLE_TIME 1000
 DISK_ROTATIONAL_DELAY 100
 DISK_ACCESS_VARIATION 10
 DISK_READ_ERROR_PROBABILITY 500 (0=never,1=always,n="about 1/n")
 DISK_WRITE_ERROR_PROBABILITY 500 (0=never,1=always,n="about 1/n")
 INIT_RANDOM_SEED 1829742401
 MEMORY_SIZE 0x01000000 (decimal: 16777216)
 MEMORY_MAPPED_AREA_LOW 0x00FFFF00
 MEMORY_MAPPED_AREA_HIGH 0x00FFFFFF
 SERIAL_STATUS_WORD_ADDRESS 0x00FFFF00
 SERIAL_DATA_WORD_ADDRESS 0x00FFFF04
 DISK_STATUS_WORD_ADDRESS 0x00FFFF08
 DISK_COMMAND_WORD_ADDRESS 0x00FFFF08
 DISK_MEMORY_ADDRESS_REGISTER 0x00FFFF0C
 DISK_SECTOR_NUMBER_REGISTER 0x00FFFF10
 DISK_SECTOR_COUNT_REGISTER 0x00FFFF14

When the emulator starts up, it looks to see if a file named “.blitzrc” exists. If it does not, then the
default values are used. If “.blitzrc” is found, then it will contain values which are read in and used

 The Emulator

September 18, 2007 Page F-37

instead of the defaults. (The emulator will also re-read the “.blitzrc” file when the “reset” command is
issued.)

The emulator command “sim” can be used to view the current settings, and produces a display like the
list above. The “sim” command may also be used to create a new “.blitzrc” file; this is convenient since
the user can then edit the file to modify one or two of the values as necessary.

The “sim” command will ask if you wish to create a new “.blitzrc” file. If you say “yes”, then it will
write out a new file using the current values. Here is what the “sim” command looks like:

 > sim
 ==================== Simulation Constants =========================
 KEYBOARD_WAIT_TIME 30000
 KEYBOARD_WAIT_TIME_VARIATION 100
 ...
 DISK_SECTOR_NUMBER_REGISTER 0x00FFFF10
 DISK_SECTOR_COUNT_REGISTER 0x00FFFF14
 ===

 The simulation constants will be read in from the file ".blitzrc"
 if it exists when the emulator starts up. If the file does not
 exist at startup, defaults will be used. You may edit the ".blitzrc"
 file to change the values and then restart the emulator.

 Would you like me to write these values out to the file ".blitzrc" now?

If the user answers “yes”, then a file will be created. The file will look like this:

 ! BLITZ Simulation Constants
 !
 ! This file is read by the BLITZ emulator when it starts up and after a
 ! "reset" command. This file is used to initialize various values that
 ! will be used by the emulator.
 !
 ! This file was produced by the emulator (with the "sim" command). It may
 ! be edited to change any or all values.
 !
 ! Each line has variable name followed by an integer value. A value may
 ! be specified in either decimal (e.g., "1234") or hex (e.g.,
 ! "0x1234abcd"). Values may be left out if desired, in which case a
 ! default will be used. In the case of the random seed, any value
 ! specified here will override a value given with a command line
 ! option (-r).
 !
 !
 KEYBOARD_WAIT_TIME 30000
 KEYBOARD_WAIT_TIME_VARIATION 100
 ...
 DISK_SECTOR_NUMBER_REGISTER 0x00FFFF10
 DISK_SECTOR_COUNT_REGISTER 0x00FFFF14

The Page Table Commands

At any time, these two BLITZ registers describe a page table:

 The Emulator

September 18, 2007 Page F-38

 PTBR: Page Table Base Register
 PTLR: Page Table Length Register

The “pt” command will print out the current page table. It will use the current values of these registers to
find the bytes in memory and will then interpret them as a page table.

Here is an example of the “pt” command.

 > pt
 Page Table:
 base (PTBR) = 0x00001000
 length (PTLR) = 0x0000000C
 This table describes a logical address space with 0x00006000
 (decimal 24576) bytes (i.e., 3 pages)

 addr entry Logical Physical Undefined Bits Dirty
 ======== ======== ======== ======== ============== =====
 00001000: 00344003 00000000 00344000 000 0
 00001004: 00346007 00002000 00346000 000 0
 00001008: 0036200F 00004000 00362000 000 1

 Referenced Writeable Valid
 ========== ========= =====
 0 1 1
 1 1 1
 1 1 1
 >

The “pt” command prints out a single line for each page table entry. In this example, the table has 3
entries. (In this document, the display will not fit on one line and it is has been reformatted to fit the
available space.)

The format and operation of the page table entries is described in the BLITZ architecture document.

For each page table entry, the “pt” command displays the actual 4 byte entry under the heading “entry”.
On the same line, the command also displays the interpretation of these bits under the headings
“Logical”, “Physical”, “Undefined Bits”, “Dirty”, “Referenced”, “Writeable”, and “Valid”.

Occasionally it is useful to see how some particular logical (or “virtual”) address will be interpreted
using the current page table. The “trans” command can be used for this.

The “trans” command will ask for a logical address. It will then consult the page table to determine
which physical address will be accessed. When the page table is used during program execution, it may
be updated. The “trans” command will ask whether or not you wish to update the page table. Exceptions
may also occur, and the “trans” command will ask whether you wish to cause a excecption.

Here is an example of the “trans” command. First, we use the “setp” command to turn on page table
translation.

 > setp
 The P bit is now 1: Paging Enabled.
 Next instruction to execute will be:
 344000: 00000000 nop

 The Emulator

September 18, 2007 Page F-39

Next, we issue the “trans” command. We supply a virtual address of 0x000468. We are interested in
reading this word, without update, so we answer “yes” to the question about “read-only”. Such an
operation would set the “Referenced” bit, but would not set the “Dirty” bit. However, we do not want to
actually modify the page table, so we answer “no” to the last question.

 > trans
 Please enter a logical address: 468
 Will this be a read-only operation (y/n)? y
 After figuring out the affect of this memory access, do you want me to
 update the page table and signal exceptions, if any, as if this
 operation were performed (y/n)? n
 Calling:
 translate (logicalAddr=0x00000468, reading=TRUE,
 wantPrinting=TRUE, doUpdates=FALSE)
 ***** PAGE TRANSLATION BEGINNING *****
 Logical address = 0x00000468
 Page Number = 0x00000000
 Offset into page = 0x00000468
 Status[P] = 1, Paging is turned on
 Page Table:
 base = 0x00001000
 length = 0x0000000C
 addr of last entry = 0x00001008
 Page number (shifted) = 0x00000000
 Address of page table entry = 0x00001000
 Page table entry = 0x00344003
 Frame number = 0x00344000
 V=1 (Page is valid)
 W=1 (Page is writable)
 R=0 (Page has not been referenced)
 D=0 (Page not dirty)
 Setting the referenced bit
 Physical address = 0x00344468
 Modified page table entry = 0x00344007
 (Page table entry was NOT modified)
 Translation completed with no exceptions
 The value of the target word in physical memory was not changed.
 It is...
 0x344468: 0x00000000
 The page table has not been modified by this command.
 >

The “Page Table Base Register” can be modified with the “setptbr” command. For example:

 > setptbr
 Enter the new value for the Page Table Base Register (PTBR) in hex: 2000
 PTBR = 0x00002000 (decimal: 8192)
 >

The “Page Table Length Register” can be modified with the “setptlr” command. For example:

 > setptlr
 Enter the new value for the Page Table Length Register (PTLR) in hex: 10
 PTLR = 0x00000010 (decimal: 16 HardwareFault)
 >

 The Emulator

September 18, 2007 Page F-40

Assembly Labels in the Emulator

A BLITZ assembly language program will define a number of “labels”. Typically these are the targets of
branch and call statements.

Consider this assembly code fragment:

 getChLoop: ! loop
 cleari ! disable interrupts
 load [r2],r3 ! if (inBufferCount != 0)
 cmp r3,0 ! .
 bne getChExit ! then break
 seti ! enable interrupts
 jmp getChLoop ! end
 getChExit: ! .

This code defines the labels “getChLoop” and “getChExit”. When the linker determines where in
memory this code will be placed, the linker will assign specific values to these labels. For example, the
linker might place this code at location 0x000D10 in memory. Thus, these two labels will have these
values after linking:

 getChLoop 000D10
 getChExit 000D28

The information about labels is not part of the program and is not used during the execution. Instead, the
CPU uses relative and absolute byte addresses. Nonetheless, the labels and their values are placed in the
executable file, along with the program bytes and the emulator reads this information in when it reads an
executable file.

The emulator uses the label information when memory is disassembled. For example, if we disassemble
the memory area containing these instructions, we will see the following. The disassembler inserts labels
such as “getChLoop” and “getChExit” into the display, making it easier to understand.

 > dis
 Enter the beginning phyical address (in hex): 000d10
 getChLoop:
 000D10: 03000000 cleari
 000D14: 6B320000 load [r2+r0],r3
 000D18: 81030000 sub r3,0x0000,r0
 000D1C: A300000C bne 0x00000C ! targetAddr = getChExit
 000D20: 04000000 seti
 000D24: A1FFFFEC jmp 0xFFFFEC ! targetAddr = getChLoop
 getChExit:
 000D28: 81330001 sub r3,0x0001,r3 ! decimal: 1, ascii: ".."
 000D2C: 6F320000 store r3,[r2+r0]
 ...
 >

In the BLITZ architecture, all jump, branch, and call instructions contain 24-bit relative offsets. In this
example, the “jmp” instruction contains a relative offset of –20 (as a 24-bit hex value, 0xFFFFEC). The
disassembler indicates that the target of the “jmp” is the instruction labeled “getChLoop”.

 The Emulator

September 18, 2007 Page F-41

To see all labels and their values, you can use the “labels” command. The list is printed twice. First, it is
sorted alphabetically by the label name; second it is sorted by label value. (These lists are usually quite
long; here we omit most of the output.)

 > labels
 Ordered alphabetically:
 Label Hex Value (in decimal)
 ============================== ========= ============
 AddressException 0000001C 28
 AddressExceptionHandler 0000007C 124
 ...
 getChElse 00000D4C 3404
 getChExit 00000D28 3368
 getChLoop 00000D10 3344
 getChar 00001098 4248
 ...
 putStLoop 00000E0C 3596
 ready 00000C4C 3148
 Ordered by value:
 Label Hex Value (in decimal)
 ============================== ========= ============
 PowerOnReset 00000000 0
 _entry 00000000 0
 TimerInterrupt 00000004 4
 DiskInterrupt 00000008 8
 ...
 putChar2 00000D74 3444
 putChLoop 00000DA0 3488
 putChExit 00000DB8 3512
 putChElse 00000DDC 3548
 ...
 outBufferCount 00006114 24852
 _Global_memoryArea 00006118 24856
 _Global_nextCharToUse 0000882C 34860
 >

To find the value of a specific label, you can use the “find” command:

 > find
 Enter the first few characters of the label; all matching
 labels will be printed: getCh
 Label Hex Value (in decimal)
 ============================== ========= ============
 getChElse 00000D4C 3404
 getChExit 00000D28 3368
 getChLoop 00000D10 3344
 getChar 00001098 4248
 getChar2 00000CE4 3300
 >

If you know the value, but not the label, you may use the “find2” command:

 > find2
 Enter the value to find (in hex): d28
 00000D28 (decimal: 3368) getChExit
 >

You may also create a new label with the “add” command. For example:

 The Emulator

September 18, 2007 Page F-42

 > add
 Enter the name of the new label: myLabel
 Enter the value of the new label (in hex): d1c
 Label "myLabel" has been added.
 >

If we disassemble the same section of code as above, we will now see that the newly created label will
be used just like any other label:

 > dis
 Enter the beginning phyical address (in hex): d10
 getChLoop:
 000D10: 03000000 cleari
 000D14: 6B320000 load [r2+r0],r3
 000D18: 81030000 sub r3,0x0000,r0
 myLabel:
 000D1C: A300000C bne 0x00000C ! targetAddr = getChExit
 000D20: 04000000 seti
 000D24: A1FFFFEC jmp 0xFFFFEC ! targetAddr = getChLoop
 getChExit:
 000D28: 81330001 sub r3,0x0001,r3 ! decimal: 1, ascii: ".."
 000D2C: 6F320000 store r3,[r2+r0]
 ...
 >

Of course the new label is added only to the tables maintained by the emulator. As soon as you quit the
emulator (or execute the “reset” command), the newly added label will be gone.

In addition to printing decimal and ASCII equivalents, the disassembler also displays label information
whenever it can. Sometimes this additional information is useful; other times it is meaningless and not
useful. Consider this fragment of assembly code:

 putChar:
 push r14 ! Function Entry:
 mov r15,r14 ! . Setup the standard frame
 push r13 ! .
 set RoutineDescriptor_putChar,r1
 push r1 ! .
 mov 0,r13 ! .
 loadb [r14+8],r1 ! Move the parameter into r1
 cmp r1,'\n' ! IF (char != '\n')
 be callputChar2 ! .
 cmp r1,'\t' ! . AND (char != '\t')
 be callputChar2 ! .
 cmp r1,' ' ! . AND (char < ' '
 bl fixChar2 ! .
 cmp r1,0x7e ! . OR char > 0x7e)
 ble callputChar2 ! .
 fixChar2: ! .
 mov '?',r1 ! char := '?'
 callputChar2: ! END IF
 call putChar2 ! Call putChar2
 ...

When disassembled, it prints like this. (Several of the long lines may wrap-around in this document.)

 The Emulator

September 18, 2007 Page F-43

 > dis
 Enter the beginning phyical address (in hex): ff8
 putChar:
 000FF8: 54EF0000 push r14,[--r15]
 000FFC: 67EF0000 or r15,r0,r14
 001000: 54DF0000 push r13,[--r15]
 001004: C0100000 sethi 0x0000,r1 ! 0x00001064 = 4196
(RoutineDescriptor_putChar)
 001008: C1101064 setlo 0x1064,r1
 00100C: 541F0000 push r1,[--r15]
 001010: 87D00000 or r0,0x0000,r13
 001014: 8C1E0008 loadb [r14+0x0008],r1 ! decimal: 8 (DiskInterrupt)
 001018: 8101000A sub r1,0x000A,r0 ! decimal: 10, ascii: ".."
 00101C: A2000020 be 0x000020 ! targetAddr = callputChar2
 001020: 81010009 sub r1,0x0009,r0 ! decimal: 9, ascii: ".."
 001024: A2000018 be 0x000018 ! targetAddr = callputChar2
 001028: 81010020 sub r1,0x0020,r0 ! decimal: 32, ascii: ". "
(PageInvalidException)
 00102C: A400000C bl 0x00000C ! targetAddr = fixChar2
 001030: 8101007E sub r1,0x007E,r0 ! decimal: 126, ascii: ".~"
 001034: A5000008 ble 0x000008 ! targetAddr = callputChar2
 fixChar2:
 001038: 8710003F or r0,0x003F,r1 ! decimal: 63, ascii: ".?"
 callputChar2:
 00103C: A0FFFD38 call 0xFFFD38 ! targetAddr = putChar2
 ...
 >

First consider the assembly source code instruction:

 cmp r1,'\n' ! IF (char != '\n')

which is disassembled as:

 sub r1,0x000A,r0 ! decimal: 10, ascii: ".."

Recall that the compare instruction “cmp” is a synthetic instruction; it is actually assembled as a subtract
instruction, with the result stored into “r0” (i.e., the result is discarded). The disassembler prints the
instruction as it actually is.

When a literal value is included in an instruction, the disassembler will print it in hex (e.g., “0x000A”).
In the comment area, the disassembler also prints this value in decimal and in ASCII. (The literal is two
bytes long, so the disassembler prints two ASCII characters, enclosed in quotes. Since the neither “00”
nor “0A” are considered printable characters, the disassembler prints two dots between the quotes.)

Next consider the assembly source code instruction:

 cmp r1,' ' ! . AND (char < ' '

which is disassembled as:

 sub r1,0x0020,r0 ! decimal: 32, ascii: ". " (PageInvalidException)

Of the two bytes in the literal value (0x00 and 0x20), the first is not a printable ASCII character code
and the second is the ASCII “space” character; between the quotes we see first a dot, then a space.

 The Emulator

September 18, 2007 Page F-44

By coincidence, the literal value in this instruction also happens to be the value of a label named
“PageInvalidException”. The disassembler also includes this information, although it is not relevant or
helpful in this case.

When the disassembler encounters a “sethi” instruction followed by a “setlo” instruction, it assumes
they are the result of a synthetic “set” instruction. For example, consider the assembly source
instruction:

 set RoutineDescriptor_putChar,r1

which is disassembled as:

 001004: C0100000 sethi 0x0000,r1 ! 0x00001064 = 4196
(RoutineDescriptor_putChar)
 001008: C1101064 setlo 0x1064,r1

The disassembler puts together the two literals (0x0000 and 0x1064) in the two instructions to get a
combined 32-bit value. This value is printed in decimal (4196) and as a label (if a label with this value
exists). In this case, the label is meaningful and helpful, while the decimal value is not.

